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Abstract 

The catenary is the curve in which a uniform chain or cable hangs freely under the force of gravity from two 

supports.  It is a U-shaped curve symmetric about a vertical axis through its low-point and was first 

described mathematically by Leibniz, Huygens and Johann Bernoulli in 1691 responding to a challenge put 

out by Jacob Bernoulli (Johann’s elder brother) to find the equation of the ‘chain curve’.  Every person 

viewing power lines hanging between supporting poles is seeing a catenary, a curve whose name is derived 

from the Latin word catena, meaning chain, and the catenary’s mathematical ‘discovery’ is due to Galileo’s 

claim – proved incorrect by Bernoulli and others – that a hanging chain was parabolic.  This paper gives a 

mathematical derivation of the catenary with examples. 
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Introduction 

Galileo Galelai in his Discorsi1 (1638) describes two methods of drawing a parabola, one simulates a ballistic 

trajectory with a smooth ball on an inclined mirror and the other is explained as: 

“Drive two nails into a wall at a convenient height and at the same level; … Over these 

two nails hang a light chain … This chain will assume the form of a parabola, …” 

Unfortunately, whilst it is close, the hanging chain does not assume the form of a parabola and Galileo’s 

assertion became a discussion point for followers of his work.  Christiaan Huygens (1629–1695) in 

correspondence in 1646 with the French monk Marin Mersenne (1588–1648) of Mersenne primes fame gave a 

proof that a hanging chain was not a parabola (Huygens 1646, Bukowski 2008) and it was Huygens in a 

letter of November 1690 to the German polymath Gottfried Leibniz (1646-1716) who first used the Latin 

term catenaria to describe the curve (Bukowski 2008).  Other prominent mathematicians of the time also 

studied the hanging chain problem, but it was the Swiss mathematician Jacob Bernoulli (1654–1705) who 

brought about the discovery of its mathematical description.  In Acta Eruditorum2 of May 1690 (pp. 217-

219) Jacob Bernoulli gave a solution to the isochrone problem of constructing the curve along which a body 

will fall in the same amount of time from any starting position (Barnett 2004, Peiffer 2006), and after this 

solution he wrote: 

 

  

 

1 Discorsi e dimostrazioni mathematiche, intorno à due nuoue scienze (translated from Italian as Dialogues concerning 

two new sciences) published in 1638 was Galileo's final book and a scientific testament covering much of his work in 

physics over the preceding thirty years.  Appendix C has extracts from a translation. 
2 Acta Eruditorum (Latin for "Acts of the Erudite") was the first scientific journal of the German-speaking lands of 

Europe, published from 1682 to 1782.  Appendix C has extracts. 
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That can be translated as (Mukhopadhyay 2001) 

And now let this problem be proposed: To find the curve assumed by a loose string hung 

freely from two fixed points.  And let this string be flexible and of uniform cross-section. 

In July 1690 in Acta Eruditorum, Leibniz takes up Jacob Bernoulli’s challenge and proposes that solutions be 

produced in one years’ time and he receives solutions from Huygens and Jacob’s younger brother Johann 

Bernoulli.  And together with his own, three solutions to the hanging chain problem are published in Acta 

Eruditorum in June and September 1691 (Leibniz 1691).  Interestingly, Jacob Bernoulli did not provide a 

solution to the hanging chain problem – a point mentioned often by his younger brother Johann in a 

sometimes-bitter rivalry that lasted beyond Jacob’s death in 1705 – but in the year following the first 

solution Jacob and others solved several variations of this problem (Barnett 2004).  Both Leibniz and Johan 

Bernoulli use the new methods of calculus developed by Leibniz in their solutions but it is Johann Bernoulli’s 

explanations of the forces acting on the chain that enable him to show that the curve satisfies the differential 

equation dy dx s a=  where s represents the arc length from the vertex to a point P on the curve and a is a 

constant depending on the weight per unit length of the chain (Barnett 2004, Bernoulli 1692).  We still use 

Bernoulli’s reasoning today in modern developments of the equations associated with the catenary although 

there is no mention of hyperbolic functions in 1691 nor is there reference to the exponential function xy e=  

where 2.7182818284e = … is a mathematical constant and the base of the natural logarithms. 

In this paper two methods of derivation of the equations for the catenary are shown and these are followed 

by an example and then a solution to Curly’s Conundrum No.15 involving a parabolic arc and a comparison 

with a catenary. 

Nomenclature 

The following notation has been used, noting that forces are vector quantities having both magnitude and 

direction and are denoted by bold uppercase letters.  The magnitude of a vector quantity is shown in italics, 

e.g., the tension force is denoted by T and its magnitude by T. 

Symbol Meaning Definition 

a parameter in the catenary equation  

d depth of catenary  

e base of natural logarithms 2.7182818284e = … 

g acceleration due to gravity ( )2m/s   

h horizontal distance between catenary supports  

v Vertical distance between catenary supports  

kg kilogram (unit of mass)  

L length of catenary between supports (m)  

M, m, m mass of chain (kg), mass of segment of chain (kg), 

metre (unit of length) 
m sλ=  

s, s arc length (m), second (unit of time)  

T, T Tension (a pulling force), magnitude of tension  

W, W Weight (a force), magnitude of weight  

x,y rectangular coordinates of P  

κ  curvature d dsκ ψ=  

λ  mass per unit length of chain ( )kg m  M Lλ =  

ρ  radius of curvature 1 ds dρ κ ψ= =  

ψ  angle between tangent and x-axis (radians)  
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Equations for the Catenary 
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Figure 1.  A catenary formed by a chain of length L supported at B and B'. 

 

In Figure 1, B and B' are the supports of a hanging chain or catenary.  The low point is at A and P is a 

point on the catenary at a distance s from A.  The chain of length L is of uniform cross-section and density 

and has a mass M, hence M Lλ =  is a constant denoting mass per unit length of the chain. 

The chain is hanging in equilibrium; hence the segment AP of length s is also in equilibrium and the three 

forces acting on this segment – 0T  (tension at A acting along the tangent at A that is parallel to the x-axis), 

T (tension at P acting upwards along the tangent at P) and the weight W (acting vertically downwards 

parallel to the y-axis) – must sum to zero.  Equating the magnitudes of the force components gives the 

following, noting that the magnitude of W is W mg sgλ= =   

 
0

sin

cos

T sg

T T

ψ λ

ψ

=
=

 (1) 

And division of the members of (1) gives, noting that the gradient of the catenary is tandy dx ψ=  

 
0

tan
dy sg

dx T

λ
ψ= =  (2) 

Also, squaring and adding the members of (1) gives ( ) ( )22 2 2 2
0sin cosT T sgψ ψ λ+ = +  and since 

2 2sin cos 1A A+ =  then 

 ( )22 2
0T T sgλ= +  (3) 

Now, define a parameter a having units of length 

 0T
a

gλ
=  (4) 

Noting that a dimensional analysis with M = mass (kg), L = length (m) and T = time (s) gives 
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 ( )( )( )2 1 2 2 1 1 2
0 MLT , = ML , = LT  and MLT M L L T LT g aλ− − − − − −= = =  

Then substituting (4) into (2) and (3) gives 

 tan
dy s

dx a
ψ= =  (5) 

 2 2T g a sλ= +  (6) 

Solving the differential equation (5) to obtain ( )y y x=  and then deriving other equations of the catenary 

can be done in two methods set out below. 

Method A (the usual method found in documents on the catenary) 

Following Nahin (2004) and noting that the differential arc length 2 2ds dx dy= +  (Pythagoras) and 

2

1
ds dy

dx dx

 = +    
, differentiate (5) with respect to x, i.e., 

d dy d s d s ds

dx dx dx a ds a dx

          =  =              
 that simplifies to 

the 2nd order differential equation 

 

22

2

1
1

d y dy

a dxdx

 = +    
 (7) 

To solve this differential equation define a variable p as 

 
2

2
 and so 

dy dp d y
p

dx dx dx
= =  

and (7) becomes 

 2

2

1
1   or  

1

a dpdp
p dx

dx a p
= + =

+
 

Which can now be easily integrated and from a table of standard integrals 

 ( )2 1
1 1

2
ln 1 sinh

1

dp
x a a p p C a p C

p

−= = + + + = +
+

∫  

where ln denotes the natural logarithm and ln logex x≡  and 1sinh−  is the inverse hyperbolic sine function 

defined in Appendix A.  1C  is a constant of integration that that can be evaluated by considering Figure 1 

and noting that when 0x = , tan 0
dy

p
dx

ψ= = =  and ln(1) 0=  then 1 0C = .  Note also that sinhx  is 

the hyperbolic sine of x and ( )1sinh sinh x x− =  (see Appendix A) hence 

 sinh
x dy

p
a dx

 =  =   
 (8) 

y can now be obtained by a second integration and standard integral results can be used to give 

 2sinh cosh
x x

y dx a C
a a

     =  =  +       ∫  

Where cosh is the hyperbolic cosine function and 2C  is another constant of integration that can be made to 

equal zero if y a=  when 0x = .  This means that if the low point of the catenary is at ( )0,a  then the 

catenary equation ( )y y x=  is 
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 cosh
x

y a
a

 =    
 (9) 

The equations for arc length ( )s s x= , equations ( ) ( ) and y y x xψ ψ= = , the inclination of the tangent 

( )xψ ψ=  and the tension ( )T T y=  are set out below. 

Equating (5) and (8) gives ( )s s x=  as 

 sinh
x

s a
a

 =    
 (10) 

The equations ( ) ( ) and y y x xψ ψ= =  can be obtained as follows. 

From (5), tans a ψ=  and 2 2 2 2 2 2tan secs a a aψ ψ= = −  since 2 2tan sec 1A A= − .  Hence 

2 2 2 2seca s a ψ+ = .  Also, squaring (9) and (10) and subtracting one from the other gives 

2 2 2 2 2cosh sinh
x x

y s a
a a

       − =  −           
 and since 2 2cosh sinh 1A A− =  (see Appendix A) then 2 2 2a s y+ = .  

Equating these two results gives 2 2 2secy a ψ=  and ( )y y ψ=  as 

 secy a ψ=  (11) 

From (10) sinh
s x

a a

 =    
 and from (5) tan

s

a
ψ=  hence tan sinh

x

a
ψ

 =    
 or ( )1sinh tanx a ψ−=  and using 

the identity (57) in Appendix A gives ( )x x ψ=  as 

 ( ) ( )1 1
4 2

ln tan ln tan secx a aπ ψ ψ ψ= + = +  (12) 

An equation for ( )xψ ψ=  can be obtained from the hyperbolic half-angle formula 
cosh 1

tanh
2 sinh

A A

A

  −  =   
 

and 

cosh 1

tanh
2

sinh

x

x a

a x

a

  −       =          

 and using (9) and (10) gives 

1

tanh
2

y

x a y a a

a s a s s

a

  −            = =   −                 

 and using (5) 

and (11) gives 
sec 1

tanh
2 tan tan

x

a

ψ

ψ ψ

   = −   
 and the right-hand side reduces to 

1 cos

sin

ψ

ψ

−
.  Now using the 

trigonometric half-angle formula 
1 cos

tan
2 sin

A A

A

  −  =   
 gives tanh tan

2 2

x

a

ψ      =        
 and so 

 12 tan tanh
2

x

a
ψ −    =      

 (13) 

Finally, the tension ( )T T y=  can be obtained by substituting 2 2 2y a s= +  (see derivation above) into (6) 

to give 

 T g yλ=  (14) 

Note that a dimensional analysis gives ( )( )( )1 2 2ML LT L  MLTT − − −= =  giving the units of T as 

( ) 2kg m s  as expected. 

  



Catenary Curve 

 

 

6 

Method B (an alternative method not often found in documents on the catenary) 

Following Lamb (1942), write (5) as 

 tans a ψ=  (15) 

and differentiate this equation with respect to ψ  to give 

 2sec
ds

a
d

ψ
ψ
=  (16) 

Now, an element of arc length 2 2ds dx dy= +  (Pythagoras) where cosdx ds ψ=  and sindy ds ψ=  and 

 cos , sin , tan ,
dx dy dy

ds ds dx
ψ ψ ψ= = =  (17) 

and, using the chain rule we have 
dx dx ds

d ds dψ ψ
=  and with (16) and (17) 

 ( )2cos sec sec
dx

a a
d

ψ ψ ψ
ψ
= =  (18) 

Similarly, 
dy dy ds

d ds dψ ψ
=  giving 

 ( )2sin sec sec tan
dy

a a
d

ψ ψ ψ ψ
ψ
= =  (19) 

And x and y can now be obtained from integration of (18) and (19) with standard integral results giving 

 ( ) 1ln sec tanx a Cψ ψ= + +  (20) 

 2secy a Cψ= +  (21) 

where 1C  and 2C  are constants of integration.  These constants will both be equal to zero when the low 

point of the catenary is at ( )0,a  (see Figure 1) and the equations ( )y y ψ=  and ( )x x ψ=  are 

 ( )ln sec tanx a ψ ψ= +  (22) 

 secy a ψ=  (23) 

Now rearranging (22) and raising both sides as powers of the base e, noting ln xe x=  gives 

 sec tan
x a

e ψ ψ= +  (24) 

Taking the reciprocal of (24) and using the laws of exponents gives 
1

sec tan

x a
e

ψ ψ

− =
+

 and noting that 

the trigonometric identity 2 2sec tan 1ψ ψ− =  can be written as ( )( )sec tan sec tan 1ψ ψ ψ ψ+ − =  then 

 sec tan
x a

e ψ ψ
− = −  (25) 

Adding and subtracting (24) and (25) and using the definitions in Appendix A gives 

 sec cosh
2

x a x a
e e x

a
ψ

−  + = =    
 (26) 

 tan sinh
2

x a x a
e e x

a
ψ

−  − = =    
 (27) 
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And using (26) in (23) and (27) in (15) gives equation for ( )y y x=  and ( )s s x=  as 

 cosh
x

y a
a

 =    
 (28) 

 sinh
x

s a
a

 =    
 (29) 

An equation for ( )xψ ψ=  is obtained from (27) as 

 1tan sinh
x

a
ψ −    =      

 (30) 

Finally, the tension ( )T T y=  can be obtained as follows.  First, squaring (15) and (23) and subtracting one 

from the other gives ( )2 2 2 2 2 2sec tany s a aψ ψ− = − = , or 2 2 2y a s= +  and using this result in (6) gives 

 T g yλ=  (31) 

Catenaries for different values of a 

The parameter a determines the shape of the catenary and as a increases the catenary becomes shallower. 

 

Figure 2.  The catenary cosh
x

y a
a

 =    
 for 1, 0.75, 0.5a =  (solid, dashed, dotted) 
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Geometry of the catenary 
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Figure 3.  The catenary cosh
x

y a
a

 =    
 of length L between supports 1P  and 2P  

In Figure 3, 1P  and 2P  are supports of a hanging chain or catenary of length L.  The low point is at A and 

P is a point on the catenary at a distance s from A.  The y-axis passes through A and intersects the x-axis at 

O.  The distance a OA=  is a constant in the catenary equation cosh
x

y a
a

 =    
.   

1P  with coordinates ( )1 1,x y  is to the left of the y-axis and ( )2 2 2,P x y  is to the right and they are separated 

by horizontal and vertical distances h and v respectively, and the depth d of the catenary is the vertical 

distance from the low point A to the highest support. 

The tangent to the catenary at ( ),P x y  intersects the x-axis at T at an angle ψ  and the normal to the 

catenary at P intersects the x-axis at G.  The centre of curvature C lies on the normal and CPρ =  is the 

radius of curvature.  By definition, the curvature κ  (kappa) of a curve ( )y f x=  at any point P on the 

curve, is the rate of change of direction of the tangent to the curve with respect to the arc length and 

d

ds

ψ
κ = .  The radius of curvature 

1 ds

d
ρ

κ ψ
= =  and from (16), (23) and (26) we may write (Yates 1959) 

 
2

2 2sec sec cosh
y x

a y a
a a

ρ ψ ψ
 = = = =    

 (32) 

For P with x ON=  and y NP=  we have from (23), (15) and (32) 

 cos , tan , secNZ y a PZ a s PG yψ ψ ψ ρ= = = = = =  (33) 

And, as previously shown in derivations of (11) and (31), and also from the right-angled triangle PZN, 

 2 2 2y a s= +  (34) 
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Determining the parameter a 

Following the Wikipedia entry Catenary (Catenary 2019), suppose the horizontal distance h and vertical 

distance v between the catenary supports 1 2,P P  are known and the length L of the catenary is known.  How 

can the parameter a be determined? 

Given that the coordinates of 1 2,P P  are ( ) ( )1 1 2 2, , ,x y x y  respectively and that 1P  is to the left of 2P  and the 

y-axis passes through A (the low point of the catenary) and intersects the x-axis at O (see Figure 3); the 

distance a OA=  is the unknown parameter.  Distances s along the catenary to the left of the y-axis will be 

negative and those to the right will be positive.  Also assume 2 1y y>  (i.e., 2P  is higher than 1P ).  Hence h, 

v and L are given by 

 2 1 2 1 2 1, ,h x x v y y L s s= − = − = −  (35) 

where 1 2,s s  are distances A to 1 2,P P  respectively. 

Now using equations ( )y y x=  and ( )s s x=  (see equations (9), (10)) write 

 

2 1

2 1

cosh cosh

sinh sinh

x x
v a a

a a

x x
L a a

a a

      = −        
      = −        

 (36) 

Squaring both equations gives 

 

2 2 2 1 2 2 1 2

2 2 2 1 2 2 1 2

cosh cosh 2 cosh cosh

sinh sinh 2 sinh sinh

x x x x
v a

a a a a

x x x x
L a

a a a a

                  = + −                          
                  = − −                          

 

and subtracting one from the other noting that 2 2cosh sinh 1A A− =  gives 

 2 2 2 1 2 1 22 cosh cosh 2 sinh sinh 2
x x x x

L v a
a a a a

                     − = − −                             
 

Now using the hyperbolic trigonometric identities: ( ) ( )2 sinh sinh cosh coshA B A B A B= + − −  and 

( ) ( )2 cosh cosh cosh coshA B A B A B= + + −  gives 

 2 2 2 1 22 cosh 1
x x

L v a
a

   −     − = −          
 

but 1 2x x h− = −  and ( )cosh coshh h− = , and 2cosh 1 2 sinh
2

A
A

 − =    
 so we can write 

 2 2 2 2 2 24 sinh     or    2 sinh
2 2

h h
L v a L v a

a a

     − =  − =        
 (37) 

This is a transcendental3 equation in a and cannot be solved algebraically.  Instead it must be solved by 

numerical methods and one such method is Newton-Raphson iteration, where, for ( ) 0f a =  a value of a may 

be found from the iterative equation 

 

3 A transcendental equation contains one or more transcendental functions and such functions cannot be expressed in 

terms of polynomials or solved by algebraic methods.  Hyperbolic functions are transcendental functions. 
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( )
( )1

n
n n

n

f a
a a

f a
+ = −

′
 (38) 

where n denotes the nth iteration and ( )f a  from (37) is 

 ( ) 2 22 sinh
2

h
f a a L v

a

 =  − −   
 (39) 

and the derivative ( ) ( ){ }d
f a f a

da
′ =  is given by 

 ( ) 2 sinh cosh
2 2 2

h h h
f a

a a a

        ′ =  −            
 (40) 

An initial value for a (for 1n = ) is chosen and the functions ( )1f a  and ( )1f a′  evaluated from (39) and 

(40) using 1a .  The next value, 2a  (a for 2n = ) is now computed from (38) and this process repeated to 

obtain values 3 4, ,a a …This iterative process can be concluded when the difference between 1na +  and 
na  

reaches an acceptably small value. 

After solving for the parameter a, the x,y coordinates of the supports can be determined if 2x  is known.  

Following Cella (1999), 2x  can be determined as follows. 

Using (36) and (35) we may write, noting that ( )cosh coshx x− =  and ( )sinh sinhx x− = −  

 

2 2 2 2

2 2 2 2

cosh cosh cosh cosh

sinh sinh sinh sinh

x x h x h x
v a a a a

a a a a

x x h x h x
L a a a a

a a a a

       − −         = − = −                      
       − −         = − = +                      

 

and dividing one equation by the other gives 

 

2 2

2 2

cosh cosh

sinh sinh

x h x

a av

L x h x

a a

   −   −        
=

   −   +        

 

Using the hyperbolic identities cosh cosh 2 sinh sinh
2 2

A B A B
A B

   + −  − =         
 and 

sinh sinh 2 sinh cosh
2 2

A B A B
A B

   + −  + =         
 gives 

2

2

2
2 sinh sinh

2 2

2
2 sinh cosh

2 2

x hh

a av

L x hh

a a

   −           
=

   −           

 and 

 22
tanh

2

x hv

L a

 −  =    
 

Solving this equation for 2x a  gives 

 2 1 1
2tanh     or    tanh

2 2

x h v h v
x a

a a L L

− −     = +  = +        
 (41) 

Now, having obtained 2x , then 1 2x x h= −  and 1 2,y y  and 1 2,s s  follow from (9) and (10). 
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Example 

Suppose that we wish to find the sag below the 

upper support 2P  of a cable 110 m long 

suspended between supports 1 2,P P  that are 100 

m apart horizontally and 20 m vertically (Cella 

1999). 

In Figure 4, h and v are the horizontal and 

vertical distances between supports 1 2 and P P .  

L is the length of the catenary and a OA=  

 Figure 4 

Solution 

1 Solve for a using Newton-Raphson iteration (38), (39) and (40) with 100h = , 20v =  and 110L =  

 

 
( )
( )

( )

( )

2 2

1

2 sinh
2

   where   

2 sinh cosh
2 2 2

n

n n

n

h
f a a L v

f a a
a a

h h hf a
f a

a a a

+

 =  − −   = −      ′    ′ =  −            

 

 

n 
na  ( )f a  ( )f a′  ( ) ( )c f a f a′=  1n na a c+ = −  

1 50.000000000 9.353581100 -0.735758882 -12.712834768 62.712834768 

2 62.712834768 2.769714918 -0.359840373 -7.697065504 70.409900272 

3 70.409900272 0.452622368 -0.250993660 -1.803321916 72.213222188 

4 72.213222188 0.017347334 -0.232085745 -0.074745367 72.287967555 

5 72.287967555 0.000027743 -0.231343945 -0.000119921 72.288087476 

6 72.288087476 0.000000000 -0.231342758 0.000000000 72.288087476 

 

Table 1.  Values for Newton-Raphson iteration 

 The solution 72.288087476a =  is achieved after 6 iterations using a starting value 1 50a =  

2 Solve for 2x  using (41) 

 1
2 63.291060536tanh

2

h v
x a

L

−  = +  =   
 

3 Solve for 1x  using (35) then 1 2,y y  and 1 2,s s  using (9) and (10) respectively 

 

1 2

1 2
1 2

1
2

2
1

36.708939464

81.81078082, 101.810780818

sinh 38.30713076 sinh 71.69286924

cosh cosh

x x h

x x
y a y a

a a

x x

a a
s a s a

= − =
      

−

=

= = = =        
      = =     

− =
  

 

4 The sag of the cable below 2P  is the vertical distance 2 29.522693342y a− =  

  

•

• P2

P1 L

v

h

cate
nary

A

x

O

y
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It should be noted that in solving for a using Newton-Raphson iteration care must be taken in selecting an 

appropriate starting value 1a .  An approximation for a can be obtained as follows 

From (37) we may write 

 
2 2

sinh
2 2

L v h

a a

 − =    
 

Using the series expansion for 
3 5 7

sinh
3! 5! 7 !

x x x
x x= + + + +⋯  gives 

 

( ) ( ) ( )

2 2 3 5 7

3 5 7

1 1 1

2 2 6 120 50402 2 2

L v h h h h

a a a a a

−
= + + + +⋯ 

Ignoring terms involving powers of 5 or greater and then rearranging gives 

 
2 224

h h
a

L v h
≈

− −
 (42) 

In the example above where 100h = , 20v =  and 110L =  a starting value for a in the Newton-Raphson 

iteration could have been 1
2 2

100 100
71.4

24 110 20 100
a = =

− −
 rather than 1 50a = .  This would have 

meant fewer iterations before convergence on 72.288087476a = . 

An alternative method of determining the parameter a  

Cella (1999) published a short article on the practical determination of the parameters of a catenary and 

derived several useful equations that are set out below.  Equation (41) above was derived by Cella (1999, eq. 

7) as an interim step in the development a transcendental equation 

Using (9), (10) and (35) we may write, noting that ( )cosh coshx x− =  and ( )sinh sinhx x− = −  

 

2 2 2
2 2 2

2 2 2
2 2 2

cosh , cosh or cosh

sinh , sinh or sinh

x x h h x
y a y v a y v a

a a a

x x h h x
s a s L a L s a

a a a

     − −      = − = − =               
     − −      = − = − =               

 

and using these equations we can write 

 

2 2

2 2

cosh cosh

sinh sinh

x h x
v a a

a a

x h x
L a a

a a

   −   = −        
   −   = +        

 (43) 

and dividing one equation by the other gives 

 

2 2

2 2

cosh cosh

sinh sinh

x h x

a av

L x h x

a a

   −   −        
=

   −   +        
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Using the hyperbolic identities cosh cosh 2 sinh sinh
2 2

A B A B
A B

   + −  − =         
 and 

sinh sinh 2 sinh cosh
2 2

A B A B
A B

   + −  + =         
 gives 

2

2

2
2 sinh sinh

2 2

2
2 sinh cosh

2 2

x hh

a av

L x hh

a a

   −           
=

   −           

 and 

 22
tanh

2

x hv

L a

 −  =    
 

and solving this equation for 2x a  gives 

 2 1 1
2tanh     or    tanh

2 2

x h v h v
x a

a a L L

− −     = +  = +        
 (44) 

We can now substitute (44) into the second member of (43) giving (Cella 1999, eq. 7) 

 1 1sinh tanh sinh tanh
2 2

h v h v
L a a

a L a L

− −         = +  + −              
 (45) 

and denoting 1tanh
v

q
L

−  =    
 we have 

 sinh sinh
2 2

h h
L a q q

a a

        = +  + −            
 (46) 

As before, this equation cannot be solved algebraically for the parameter a, instead a solution using Newton-

Raphson iteration is a practical alternative.  For this numerical technique (see above) we have 

 
( )
( )1

n

n n

n

f a
a a

f a
+ = −

′
 (47) 

where, with 1tanh
v

q
L

−  =    
 

 ( ) sinh sinh
2 2

h h
f a a q q L

a a

        = +  + −  −           
 (48) 

And the derivative ( ) ( ){ }d
f a f a

da
′ =  is 

 
( ) sinh cosh sinh cosh

2 2 2 2 2 2

sinh sinh cosh cosh
2 2 2 2 2

h h h h h h
f a q q q q

a a a a a a

h h h h h
q q q q

a a a a a

             ′ = +  − +  + −  − −                    
                = +  + −  − +  + −                        

 

Using the hyperbolic identities sinh sinh 2 sinh cosh
2 2

A B A B
A B

   + −  + =         
 and 

cosh cosh 2 cosh cosh
2 2

A B A B
A B

   + −  + =         
 gives 

 ( ) 2 sinh cosh 2 cosh cosh 2 cosh sinh cosh
2 2 2 2 2 2

h h h h h h
f a q q q

a a a a a a

                      ′ =  −  =  −                                
 (49) 
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Similarly to the previous method, after solving for a, 2x  can be found from (44) then 1 2x x h= −  and 1 2,y y  

and 1 2,s s  follow from (9) and (10). 

For the example above, a table of values for Newton-Raphson iteration (47), (48) and (49) with 100h = , 

20v =  and 110L =  is shown below. 

 

 
( )
( )

( )

( )
1

1

sinh sinh
2 2

   where      and tanh

2cosh sinh cosh
2 2 2

n

n n

n

h h
f a a q q L

f a va a
a a q

h h hf a L
f a q

a a a

−
+

           = +  + −  −                 = − =          ′      ′ =  −                

 

 

n 
na  ( )2h a q+  ( )2h a q−  ( )f a  ( )f a′  ( ) ( )c f a f a′=  

1n na a c+ = −  

1 50 1.183862390 0.816137610 9.512127665 -0.748230260 -12.712834768 62.712834768 

2 62.712834768 0.981147351 0.613422571 2.816662582 -0.365939796 -7.697065504 70.409900272 

3 70.409900272 0.893989798 0.526265018 0.460294480 -0.255248093 -1.803321916 72.213222188 

4 72.213222188 0.876256366 0.508531586 0.017641378 -0.236019682 -0.074745367 72.287967555 

5 72.287967555 0.875540434 0.507815654 0.000028213 -0.235265308 -0.000119921 72.288087476 

6 72.288087476 0.875539287 0.507814506 0.000000000 -0.235264101 0.000000000 72.288087476 

Table 2.  Newton-Raphson iteration 

The result 72.288087476a =  after 6 iterations is identical to a in the previous iterative scheme that used a 

different function ( )f a . 

The catenary and the parabolic curve: Curly’s Conundrum No. 15 

x Curly’s Conundrum No. 15 xxxxxxxxxxx 

A power transmission cable, spanning a lake, hangs in a parabolic 

arc between pylons A and B.  The pylons are 2.4 km apart and the 

lowest point of the cable is 1.6 km from A.  If the RL’s4 of the tops of 

the pylons A and B are 500.0 m and 423.2 m respectively, calculate 

the minimum clearance if the water level of the lake is 382.0 m. 

water level

parabolic   curve

lo
w
 p

o
in

t

A

B

1600 800  

 

 

4 Reduced Levels (elevations above a datum) 
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The Institution of Surveyors Victoria (ISV) has a news bulletin Traverse that is published quarterly and 

circulated to members.  In Traverse 321 (March 2019) the puzzle (above) was published as Curly’s 

Conundrum No. 15.  The solution was published in Traverse 322 (June 2019) and is summarized below: 

Solution to Curly’s Conundrum No. 15 

1 The power cable hangs in a parabolic curve 2y ax bx c= + +  where the x,y system has its origin at A 

2 At A: 0, 0 hence 0A Ay x c= = =  

 At B: ( )276.8, 2400  and  iB B B B By x y ax bx= − = = +  

 At C: gradient ( )2 0 iiC

dy
ax b

dx
= + =  

3 Equations (i) and (ii) can be written as a matrix equation 
2

02 1
BB B

C

a yx x

bx

     
     =     

         
 that can be solved for a 

and b, where, in matrix notation: 
22

1 0.0000401

0 0.12800022

B B

C BB B C

xa y

b x xx x x

      −      = =      −−−            
 

4 ( ) ( )( )2
500.0 1600 1600 0 397.6C A CRL RL y a b= + = + + + =  

5 Minimum clearance is 397.6 382.0 15.6 m− =  

Catenary v’s Parabola 

Of course, we know that the power cable will not hang in a parabolic arc between the supports, but instead 

will hang in a catenary.  How close are the two curves? 

To make a comparison, we need to know the length of cable in the parabolic curve in Curly’s Conundrum 

No. 15 and from Appendix B, the formula for arc length of a parabolic curve 2y ax bc c= + +  from 0x =  

to x t=  is 

 
( ) ( ) ( )

( )( )

2 2

2 2

2 1 2 ln 1 2 21

4 1 ln 1

at b at b at b at b
s

a b b b b

    + + + + + + + +    =    − + + + +   

 (50) 

So for 0.000040, 0.128000, 0 and 2400a b c t= = − = =  we have ( ) ( )2 2
2 0.064 0.004096at b+ = =  and 

21 1.016384000b+ =  giving 

 

( )
( )

( )( )( )
( ){ }

0.064 1.004096 ln 1.004096 0.0641

4 0.000040 0.128 1.016384 ln 1.016384 0.128

6250 0.128087328 0.256697343

2404.90418987 m

s

  + +  =   − − + + −   
= − −

=

 

P2

y

x

y = ax + bx + c2

2400

7
6
.8

1600 800

1
0
2
.4

low point

2404.904

parabola

 

Figure 5.  The parabolic arc in Curly’s Conundrum No. 15 
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We can now use this value (rounded to nearest mm) as the length of a catenary 2404.904 mL =  between 

supports 1P  and 2P  separated by 2400 mh =  and 76.8 mv = −  to determine the parameter a in the 

catenary equation.  As before, the solution for a is iterative and the other values of the catenary are set out 

below 

1 Solve for a using Newton-Raphson iteration (38), (39) and (40) with 2400h = , 76.8v = −  and 

2404.904L =  

 

 
( )
( )

( )

( )

2 2

1

2 sinh
2

   where   

2 sinh cosh
2 2 2

n

n n

n

h
f a a L v

f a a
a a

h h hf a
f a

a a a

+

 =  − −   = −      ′    ′ =  −            

 

 A starting value for a can be calculated from (42) as 

 1
2 2

12515
24

h h
a

L v h
= =

− −
 (nearest whole number) 

 

n 
na  ( )f a  ( )f a′  ( ) ( )c f a f a′=  1n na a c+ = −  

1 12515 0.001866558 -0.000588246 -3.173088943 12518.173088943 

2 12518.173088943 0.000000710 -0.000587799 -0.001208021 12518.174296964 

3 12518.174296964 0.000000000 -0.000587799 0.000000000 12518.174296964 

Table 3.  Values for Newton-Raphson iteration 

 The solution 12518.174296964a =  is achieved after 3 iterations using a starting value 1 12515a =  

2 Solve for 2x  using (41) 

 1
2 800.099294777tanh

2

h v
x a

L

−  = +  =   
 

3 Solve for 1x  using (35) then 1 2,y y  and 1 2,s s  using (9) and (10) respectively 

 

1 2

1 2
1 2

1
1 2

2

1599.900705223

12620.552181711, 12543.752181711

sinh 1604.259842457 sinh 800.644157543

cosh cosh

x x h

x x
y a y a

a a

a
s a a

x x

a
s

= − =
      = = = =        
      = =       

−

− =


=

 

4 The sag of the cable below 1P  is the vertical distance 1 102.377884747y a− =  

These values are shown (rounded to nearest mm) in Figure 6. 
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.8800.099
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O
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1604.260
800
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4
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low point

a

y =a cosh x−a( )

 

Figure 6.  The catenary for Curly’s Conundrum No. 15 

 

The following table shows the sag5 for a parabola and the catenary and the difference between the two.  If 

the difference is positive the parabola is above the catenary.  If the difference is negative then the parabola is 

below the catenary. 

 

Parabola Catenary 

difference 

x y (sag) horiz dist from 

1P  

sag related to 1P  

0 0.000 0 0.000 0.000 

200 -24.000 200 -24.021 0.021 

400 -44.800 400 -44.827 0.027 

600 -62.400 600 -62.423 0.023 

800 -76.800 800 -76.813 0.013 

1000 -88.000 1000 -88.001 0.001 

1200 -96.000 1200 -95.990 -0.010 

1400 -100.800 1400 -100.782 -0.018 

1599.900705 -102.400 1599.900705 -102.377885** -0.022 

1600 -102.400000* 1600 -102.378 -0.022 

1800 -100.800 1800 -100.779 -0.021 

2000 -96.000 2000 -95.983 -0.017 

2200 -88.000 2200 -87.991 -0.009 

2400 -76.800 2400 -76.800 0.000 

 

Table 4.  Differences in sag between Parabola and Catenary for Curly’s Conundrum No. 15 

(*) and (**) are low points of parabola and catenary respectively 

 

  

 

5 Sag is the vertical distance between the support (P1 or P2) and the curve (parabola or catenary). 
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Conclusion 

The catenary is a curve with a relatively simple equation that was discovered by scientists and 

mathematicians of the 16th and 17th centuries wishing to understand the physics of motion of bodies or the 

shapes of flexible objects under the action of gravity.  This paper has given some history of the catenary’s 

discovery and some of the great mathematicians involved; Galileo, Huygens, Leibniz, Jacob and Daniel 

Bernoulli prominent amongst many.  Two modern methods of derivation of the catenary equations have been 

provided and the geometry of the curve explained.  In addition, examples of calculations are shown as well as 

a comparison between a catenary and a parabolic arc for a hanging cable.  The reference list provides further 

reading on the topic and appendices show details of associated topics (hyperbolic functions and length of 

parabolic arc) as well as some extracts from historical writings on the topic. 
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Appendix A:  Hyperbolic functions 

The basic functions are the hyperbolic sine of x, denoted by sinhx , and the hyperbolic cosine of x denoted 

by cosh x ; they are defined as 

 

2 2

2 2

1 1
sinh  

2 2 2
1 1

cosh
2 2 2

x x x x

x x

x x x x

x x

e e e e
x

e e
e e e e

x
e e

− −

−

− −

−

− − −
= = =

+ + +
= = =

 (51) 

Other hyperbolic functions are in terms of these 

 

2 2

2 2

2 2

sinh 1 1 1
tanh  , coth  

cosh tanh1 1
1 2 2 1 2 2

sech  , csch  
cosh sinh1 1

x x x x x x

x x x x x x

x x

x x x x x x

x e e e e e e
x x

x xe e e e e e

e e
x x

x xe e e e e e

− −

− −

− −

− − + +
= = = = = =

+ + − −

= = = = = =
+ + − −

 (52) 

And 

 2 2 2 2 2 2cosh sinh 1, sech tanh 1, coth csch 1x x x x x x− = + = − =  (53) 

The inverse hyperbolic function of sinhx  is 1sinh x−  and is defined by ( )1sinh sinhx x− = .  Similarly 

1cosh x−  and 1tanh x−  are defined by ( )1cosh cosh x x− =  and ( )1tanh tanh x x− = ; both requiring 0x >  

and as a consequence of the definitions (see, for example, Fitch 2016) 

 

( )
( )

1 2

1 2

1

sinh ln 1

cosh ln 1 1

1 1
tanh ln 1 1

2 1

x x x x

x x x x

x
x x

x

−

−

−

= + + −∞ < < ∞

= + − ≥

 + =  − < <   −

 (54) 

A useful identity linking circular and hyperbolic functions is obtained by considering the following. 

Using the trigonometric addition and double angle formula we have 

  ( )
( )21 11 1

2 22 21 1
4 2 1 1 2 21 1

2 2 2 2

cos sincos sin 1 sin
ln tan ln ln ln

coscos sin cos sin

x xx x x
x

xx x x x
π

++ +
+ = = =

− −
 (55) 

Also, replacing x with tanx  in the definition of the inverse hyperbolic functions in equations (54) we have 

  ( ) ( )1 2 1 sin
sinh tan ln tan 1 tan ln tan sec ln

cos

x
x x x x x

x

− +
= + + = + =  (56) 

And equating 
1 sin

ln
cos

x

x

+
 from equations (55) and (56) gives 

 ( ) ( ) 11 1
4 2

ln tan ln tan sec sinh tanx x x xπ −+ = + =  (57) 
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Appendix B:  Arc Length of a Parabolic Curve 

 

t

y

x

s

y = ax + bx + c2

 

Figure B1.  Parabolic curve of length s 

 

The differential arc length 

2

2 2 1
dy

ds dx dy dx
dx

 = + = +    
 and integration gives the arc length sof a curve 

as 

 

2

0

1

t
dy

s dx
dx

 = +    ∫  (58) 

And for a parabolic curve 2y ax bx c= + + . 2
dy

ax b
dx
= +  then the parabolic arc length is 

 ( )2
0

1 2

t

s ax b dx= + +∫  (59) 

Let 2 tanax b u+ =  then ( )2 22 tanax b u+ =  and ( )2 2 21 2 1 tan secax b u u+ + = + = .  Also 

( ) ( )2 tan
d d du

ax b u
dx du dx

+ =  and 21
sec

2
dx u du

a
=  and using these results in (59) gives 

 ( )2 2 31
2

0

1
1 2 sec sec sec

2

t

a
s ax b dx u u du u du

a
= + + = =∫ ∫ ∫  

Using standard integral results 

 

( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1
2 2 2

2 21 1 1
2 2 2

0

2 21
4

0

sec tan ln sec tan

2 1 2 ln 1 2 2

2 1 2 ln 1 2 2

a
x t

a
x

t

a

s u u u u

ax b ax b ax b ax b

ax b ax b ax b ax b

=

=

 = + +  
  = + + + + + + + +     
  = + + + + + + + +     

 

And the arc length of a parabolic 2y ax bc c= + +  curve from 0x =  to x t=  is 

 
( ) ( ) ( )

( )( )

2 2

2 2

2 1 2 ln 1 2 21

4 1 ln 1

at b at b at b at b
s

a b b b b

    + + + + + + + +    =    − + + + +   

 (60) 
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Appendix C: Extracts from Galileo’s Discorsi and Acta Eruditorum (1690) 

 

A translation of Discorsi 

 

 

 

The following pages (pp.148-149) are a discussion between Sagredo (SAGR.) and Salviati (SALV.) two of the 

three people (Simplicio is not present here) that Galileo used to put forward explanations, questions and 

theories on various topic of science. 
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Acta Eruditorum 
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From Acta Eruditorum, May 1690, bottom of p. 217 

 

The “J.B.” is Jacob Bernoulli 

ANALYSIS PROBLEMATIS ANTEHAC PROPOSITI,  

de invention linea descensus a corpore gravi percurrendae uniformiter, sic ut temporibus aequalibus aequales 

altitudines emetiatur: and alterius cujusdam Problematis Propesitio 

 

Acta Eruditorum, May 1690, top of p. 218 

 

 

Acta Eruditorum, May 1690, bottom of p.219 

 

Problema vicissim proponendum hoc esto:  

Invenire, quam curvam referat funis laxus & inter duo puncta fixae libere suspensus.  Sumo autem, funem 

esse lineam in omnibus suis partibus facillime flexilem. 
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Some Latin translations: 

Problem vicissim  = On the other hand problem 

proponendum  = displayed 

hoc esto  = to be 

Invenire, quam curvam referat funis laxus = Find the curve resembling a loose cord 

inter duo puncta fixae libere suspensus = freely suspended between two fixed points 

Sumo autem = take it 

funem esse lineam = a rope line 

in omnibus suis = in all 

suis partibus = its parts 

facillime flexilem = easily pliable 

 


