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Abstract

The catenary is the curve in which a uniform chain or cable hangs freely under the force of gravity from two
supports. It is a U-shaped curve symmetric about a vertical axis through its low-point and was first
described mathematically by Leibniz, Huygens and Johann Bernoulli in 1691 responding to a challenge put
out by Jacob Bernoulli (Johann’s elder brother) to find the equation of the ‘chain curve’. Every person
viewing power lines hanging between supporting poles is seeing a catenary, a curve whose name is derived
from the Latin word catena, meaning chain, and the catenary’s mathematical ‘discovery’ is due to Galileo’s
claim — proved incorrect by Bernoulli and others — that a hanging chain was parabolic. This paper gives a
mathematical derivation of the catenary with examples.
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Introduction

Galileo Galelai in his Discorsi! (1638) describes two methods of drawing a parabola, one simulates a ballistic
trajectory with a smooth ball on an inclined mirror and the other is explained as:

“Drive two nails into a wall at a convenient height and at the same level; ... Over these
two nails hang a light chain ... This chain will assume the form of a parabola, ...”

Unfortunately, whilst it is close, the hanging chain does not assume the form of a parabola and Galileo’s
assertion became a discussion point for followers of his work. Christiaan Huygens (1629-1695) in
correspondence in 1646 with the French monk Marin Mersenne (1588-1648) of Mersenne primes fame gave a
proof that a hanging chain was not a parabola (Huygens 1646, Bukowski 2008) and it was Huygens in a
letter of November 1690 to the German polymath Gottiried Leibniz (1646-1716) who first used the Latin
term catenaria to describe the curve (Bukowski 2008). Other prominent mathematicians of the time also
studied the hanging chain problem, but it was the Swiss mathematician Jacob Bernoulli (1654-1705) who
brought about the discovery of its mathematical description. In Acta Eruditorum? of May 1690 (pp. 217-
219) Jacob Bernoulli gave a solution to the isochrone problem of constructing the curve along which a body
will fall in the same amount of time from any starting position (Barnett 2004, Peiffer 2006), and after this
solution he wrote:

L Discorsi e dimostrazioni mathematiche, intorno a due nuoue scienze (translated from Ttalian as Dialogues concerning
two new sciences) published in 1638 was Galileo's final book and a scientific testament covering much of his work in
physics over the preceding thirty years. Appendix C has extracts from a translation.

2 Acta Eruditorum (Latin for "Acts of the Erudite") was the first scientific journal of the German-speaking lands of
Europe, published from 1682 to 1782. Appendix C has extracts.
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That can be translated as (Mukhopadhyay 2001)

And now let this problem be proposed: To find the curve assumed by a loose string hung
freely from two fixed points. And let this string be flexible and of uniform cross-section.

In July 1690 in Acta Eruditorum, Leibniz takes up Jacob Bernoulli’s challenge and proposes that solutions be
produced in one years’ time and he receives solutions from Huygens and Jacob’s younger brother Johann
Bernoulli. And together with his own, three solutions to the hanging chain problem are published in Acta
Eruditorum in June and September 1691 (Leibniz 1691). Interestingly, Jacob Bernoulli did not provide a
solution to the hanging chain problem — a point mentioned often by his younger brother Johann in a
sometimes-bitter rivalry that lasted beyond Jacob’s death in 1705 — but in the year following the first
solution Jacob and others solved several variations of this problem (Barnett 2004). Both Leibniz and Johan
Bernoulli use the new methods of calculus developed by Leibniz in their solutions but it is Johann Bernoulli’s
explanations of the forces acting on the chain that enable him to show that the curve satisfies the differential

equation dy/ dx = s/ a where s represents the arc length from the vertex to a point P on the curve and a is a
constant depending on the weight per unit length of the chain (Barnett 2004, Bernoulli 1692). We still use
Bernoulli’s reasoning today in modern developments of the equations associated with the catenary although
there is no mention of hyperbolic functions in 1691 nor is there reference to the exponential function y = e*

where e = 2.7182818284... is a mathematical constant and the base of the natural logarithms.

In this paper two methods of derivation of the equations for the catenary are shown and these are followed
by an example and then a solution to Curly’s Conundrum No.15 involving a parabolic arc and a comparison
with a catenary.

Nomenclature

The following notation has been used, noting that forces are vector quantities having both magnitude and
direction and are denoted by bold uppercase letters. The magnitude of a vector quantity is shown in italics,
e.g., the tension force is denoted by T and its magnitude by T.

Symbol Meaning Definition
a parameter in the catenary equation
d depth of catenary
e base of natural logarithms e = 2.7182818284...
g acceleration due to gravity (m/sz)
h horizontal distance between catenary supports
v Vertical distance between catenary supports
ke kilogram (unit of mass)
L length of catenary between supports (m)
M, m, m mass of chain (kg), mass of segment of chain (kg), m = \s
metre (unit of length)
s, 8 arc length (m), second (unit of time)
T, T Tension (a pulling force), magnitude of tension
W, W Weight (a force), magnitude of weight
z,y rectangular coordinates of P
K curvature K = d1/)/ ds
A mass per unit length of chain (kg/m) A= M/L
p radius of curvature p= 1/ K = ds/ dy
P angle between tangent and z-axis (radians)
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Equations for the Catenary

tangent T,

X

)

Figure 1. A catenary formed by a chain of length L supported at B and B'.

In Figure 1, B and B’ are the supports of a hanging chain or catenary. The low point is at A and P is a
point on the catenary at a distance s from A. The chain of length L is of uniform cross-section and density

and has a mass M, hence A = M / L is a constant denoting mass per unit length of the chain.

The chain is hanging in equilibrium; hence the segment AP of length s is also in equilibrium and the three
forces acting on this segment — T, (tension at A acting along the tangent at A that is parallel to the 2-axis),

T (tension at P acting upwards along the tangent at P) and the weight W (acting vertically downwards
parallel to the y-axis) — must sum to zero. Equating the magnitudes of the force components gives the
following, noting that the magnitude of W is W = mg = Asg

Tsiny = Asg
Tcosyp =T

And division of the members of (1) gives, noting that the gradient of the catenary is dy/ dxr = tan)

%:tanw:ﬂ (2)

dr 1

Also, squaring and adding the members of (1) gives T2 (s,in2 ¥ + cos® 1,[)) = TO2 + ()\sg)2 and since
sin? A + cos? A =1 then
2
T° =T + ()\sg) (3)
Now, define a parameter a having units of length

T
a=-4 (4)
Ag

Noting that a dimensional analysis with M = mass (kg), L = length (m) and T = time (s) gives
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Ty = MLT 2, A =ML}, g=LT? and a = (MLT2 )(M’lL)(L’lTZ) =L
Then substituting (4) into (2) and (3) gives

@:tanwzﬁ (5)

dzx a
T = AgVa? + & (6)

Solving the differential equation (5) to obtain y = y(:z:) and then deriving other equations of the catenary

can be done in two methods set out below.
Method A (the usual method found in documents on the catenary)

Following Nahin (2004) and noting that the differential arc length ds = y/dz® + dy? (Pythagoras) and

2
ds =,1+ dy , differentiate (5) with respect to z, i.e., dldy = dls = d|s|ds that simplifies to
dx dx dx \ dx dx\a ds\a)dx
the 22d order differential equation
dy 1 dy Y
- h+|2 (7)
dr2 a dz
To solve this differential equation define a variable p as
2
p = dy and so dp _dy
dx dr  dg?

and (7) becomes

adp
@:lxll—l—p? or dz = —
dr a /1+p2

Which can now be easily integrated and from a table of standard integrals

x:afd—p:aln(p—l—\/l—l—pZ)—l—Cl =asinh ' p+C,
V1+ p?
where In denotes the natural logarithm and Inz = log, z and sinh™! is the inverse hyperbolic sine function

defined in Appendix A. C, is a constant of integration that that can be evaluated by considering Figure 1

and noting that when z =0, p = % =tanty = 0 and In(l) = 0 then C; = 0. Note also that sinhz is
x

the hyperbolic sine of z and sinh(sinh’1 x) = z (see Appendix A) hence
p—sinh[f]—@ (8)
a dx

y can now be obtained by a second integration and standard integral results can be used to give

Yy = fsinh[z}dz = acosh[%} + C,

a

Where cosh is the hyperbolic cosine function and C, is another constant of integration that can be made to
equal zero if y = a when z = 0. This means that if the low point of the catenary is at (O,a) then the

catenary equation y = y(x) is
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y = acosh[f] 9)

The equations for arc length s = s(x) , equations y = y(w) and z = x(w), the inclination of the tangent

Y = 1[)(1:) and the tension T = T(y) are set out below.

Equating (5) and (8) gives s = s(x) as
s = asinh[z] (10)
a

The equations y = y(d}) and z = x(d}) can be obtained as follows.

From (5), s = atan and s2 = a’tan® ¢ = a®sec® i) — a® since tan®? A = sec? A — 1. Hence
a® + 5% = a®sec’ 1. Also, squaring (9) and (10) and subtracting one from the other gives

P — 52 = a? [cosh2 [E] — sinh?® [f
a

]] and since cosh? A — sinh? A = 1 (see Appendix A) then a® + s* = 3.
a

Equating these two results gives y*> = a’sec? ¢ and y = y(¢) as
y = asect) (11)

From (10) L sinh[E
a

] and from (5) LA tant hence tanty = sinh[z] or & = asinh™! (tand;) and using
a a a

the identity (57) in Appendix A gives z = :1:(711) as
x:alntan(iw+%¢):aln(tanw+sec1/)) (12)

coshA —1

An equation for ¢ = 1/J(x) can be obtained from the hyperbolic half-angle formula tanh[g] = — A
sin
and using (9) and (10) gives tanh[%] =2 [EJ[E} ~ % and using (5)
a a

2] B

] secy 1 1— cosv

z
cosh[]
a
and tanh[ ]
z
sinh| =
a

and the right-hand side reduces to . Now using the

and (11) gives tanh L
2a tanty  tany sin Y

trigonometric half-angle formula tan 4 = 1= cosd gives tanh 2| = tan ¥ and so
2 sin A 2a 2
-1 T
1 = 2tan” |tanh|— (13)
2a

Finally, the tension T = T(y) can be obtained by substituting y*> = a*> + s (see derivation above) into (6)

to give

T =M\gy (14)

Note that a dimensional analysis gives T = (ML’1 )(LT’Q)(L) = MLT? giving the units of T as

(kg m)/52 as expected.
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Method B (an alternative method not often found in documents on the catenary)
Following Lamb (1942), write (5) as
s = atany) (15)

and differentiate this equation with respect to 1 to give

j—; = asec’ ¢ (16)

Now, an element of arc length ds = v/dz® + dy® (Pythagoras) where dz = dscost) and dy = dssint) and

dx dy . dy
— = cosyY, — =siny, — = tanu), 17
ds v ds v dx v a7
and, using the chain rule we have do _ dv ds and with (16) and (17)
4 ds dy
ﬁ:cosnﬁ(asec2¢)—asem/) (18)
dip
Similarly, dy _ dyds giving
W ds dy
—y:sinqﬁ(ase(321/)):asecz/)tan¢ (19)
di
And z and y can now be obtained from integration of (18) and (19) with standard integral results giving
xzaln(secdz—&—tanqﬁ)—kCl (20)
y = asecp + C, (21)

where C| and C, are constants of integration. These constants will both be equal to zero when the low

point of the catenary is at (O,a) (see Figure 1) and the equations y = y(d}) and z = x(w) are

xzaln(secd;—&—tanqﬁ) (22)
Yy = asecyp (23)
Now rearranging (22) and raising both sides as powers of the base e, noting e"* = z gives
e'T/a' = sect + tan) (24)
Taking the reciprocal of (24) and using the laws of exponents gives efz/ ¢ = v and noting that
secty + tan

the trigonometric identity sec? 1) — tan? ) =1 can be written as (secw + tand))(secw — tanw) =1 then

e = sect) — tan) (25)

Adding and subtracting (24) and (25) and using the definitions in Appendix A gives

1/0/ —I/a
secy) = ¢ te / = co&,h[f] (26)
2 a
e.’lf/(l _ 671‘ a z
tanty) = = sinh[—] (27)
2 a
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And using (26) in (23) and (27) in (15) gives equation for y = y(x) and s = s(x) as

y = acosh[z] (28)
s = asinh[z] (29)

An equation for ¢ = 1,[)(1:) is obtained from (27) as

Y = tan! (30)

sinh [E]
a

Finally, the tension T = T(y) can be obtained as follows. First, squaring (15) and (23) and subtracting one

from the other gives y? — s> = a2 (sec2 ¢ — tan® w) =a?, or y* = a® + s° and using this result in (6) gives

T = M\gy (31)

Catenaries for different values of a

The parameter a determines the shape of the catenary and as a increases the catenary becomes shallower.

Catenary Curve
6 T T T T T H T

Figure 2. The catenary y = acosh[z] for a =1, 0.75, 0.5 (solid, dashed, dotted)
a
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Geometry of the catenary

G

=6

0]

Figure 3. The catenary y = acosh[z] of length L between supports P, and P,

a

In Figure 3, P, and P, are supports of a hanging chain or catenary of length L. The low point is at A and

P is a point on the catenary at a distance s from A. The y-axis passes through A and intersects the z-axis at

O. The distance a = OA is a constant in the catenary equation y = acosh[f}.
a

P, with coordinates (xl,yl) is to the left of the y-axis and P, (3172,(1/2 ) is to the right and they are separated

by horizontal and vertical distances h and v respectively, and the depth d of the catenary is the vertical
distance from the low point A to the highest support.

The tangent to the catenary at P (:gy) intersects the z-axis at T at an angle 1) and the normal to the
catenary at P intersects the z-axis at G. The centre of curvature C lies on the normal and p = CP is the
radius of curvature. By definition, the curvature s (kappa) of a curve y = f (z) at any point P on the

curve, is the rate of change of direction of the tangent to the curve with respect to the arc length and

K= ﬂ The radius of curvature p = 1o j—; and from (16), (23) and (26) we may write (Yates 1959)
s K

y? x
p—asccQw—ysccw———acoshZ[—} (32)
a a

For P with 2 = ON and y = NP we have from (23), (15) and (32)
NZ = ycosy = a, PZ =atany =s, PG = ysecy) = p (33)

And, as previously shown in derivations of (11) and (31), and also from the right-angled triangle PZN,

v =a’ 4§ (34)
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Determining the parameter a

Following the Wikipedia entry Catenary (Catenary 2019), suppose the horizontal distance h and vertical
distance v between the catenary supports F,, P, are known and the length L of the catenary is known. How

can the parameter a be determined?

Given that the coordinates of P,,F, are (xl,yl ),(xQ,yQ) respectively and that P, is to the left of P, and the

y-axis passes through A (the low point of the catenary) and intersects the z-axis at O (see Figure 3); the
distance a = OA is the unknown parameter. Distances s along the catenary to the left of the y-axis will be

negative and those to the right will be positive. Also assume y, > y, (i.e., P, is higher than P ). Hence h,

v and L are given by
h=xy—mz, v=y,—y, L=s5 —5 (35)
where s,,s, are distances A to P, P, respectively.

Now using equations y = y(x) and s = s(m) (see equations (9), (10)) write

a a

v = acosh[x—2] — acosh[ﬁ]

L= asinh[ﬁ] — asinh[ﬁ]

a a
Squaring both equations gives

X

v = a? [cosh2

+ cosh? [x_2] — 2cosh[ﬁ]cosh[x—2]]
a a a

a? [Sinh2 [ﬁ] — sinh? [ﬁ] — QSinh[ﬁ]sinh ﬁ]]
a a a a

and subtracting one from the other noting that cosh? A — sinh? 4 = 1 gives
N
a

Now using the hyperbolic trigonometric identities: 2sinh Asinh B = cosh(A + B) — cosh(A — B) and

'y
a

L2

7 — =42 [2cosh[ﬂ]cosh[ﬁ] — QSinh[ﬂ]sinh
a a a

2cosh Acosh B = cosh(A + B) + cosh(A — B) gives

- = 2(12[005h[Jrl — %]—1]
a

but z; —x, = —h and cosh(—h) = coshh , and cosh 4 — 1 = 2sinh? [g] SO we can write

I? —v* = 4a? sinh? 1 or ~I? —v* = 2asinh 1 (37)
2a 2a

This is a transcendental® equation in a and cannot be solved algebraically. Instead it must be solved by

numerical methods and one such method is Newton-Raphson iteration, where, for f (a) = 0 a value of a may

be found from the iterative equation

3 A transcendental equation contains one or more transcendental functions and such functions cannot be expressed in
terms of polynomials or solved by algebraic methods. Hyperbolic functions are transcendental functions.
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f(a)—2asinh[£]—\/L2—v2 (39)

and the derivative f’(a) = i{f(a)} is given by

da
h h h
"(a) = 2{sinh|— | — —cosh| — 40
rie) =2l el @
An initial value for a (for n = 1) is chosen and the functions f (al) and f '(al) evaluated from (39) and

(40) using a,. The next value, a, (afor n = 2) is now computed from (38) and this process repeated to

obtain values a,a,,... This iterative process can be concluded when the difference between a, , and a,

reaches an acceptably small value.

After solving for the parameter a, the z,y coordinates of the supports can be determined if z, is known.

Following Cella (1999), z, can be determined as follows.

Using (36) and (35) we may write, noting that cosh(—x) = coshz and sinh(—x) = —sinhz

T, Ty —h 7, h — 1,
v = acosh|—= | — acosh = acosh|—=|— acosh
a

a a

S|

. , . 7y —h . T, . h — x,
L = asinh|—=| — asinh = asinh|—=| 4 asinh
a a a a
and dividing one equation by the other gives
h—
cosh[%] — cosh[ % J
v a a
L h—
sinh[%] + sinh[ %2 ]
a a
Using the hyperbolic identities cosh A — cosh B = QSinh[ + B] i h[A ; B] and
2z, — h
5 2Sinh[2h]sinh[ z22 ]
sinhA+sinhB—QSinh[ + ] sh[ — ] gives — = ¢ 5 a4 - and
2smh[}cosh[ %~ J
a 2a
[2:52 — h]
— = tanh
2a
Solving this equation for z, / a gives
B _h + tanh!| 2~ or T, = h +atanh~! |2 (41)
a 2a L 2 L

Now, having obtained =, , then z;, = z, —h and y,y, and s,s, follow from (9) and (10).

10
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Example
Suppose that we wish to find the sag below the
upper support F, of a cable 110 m long

suspended between supports P, P, that are 100

m apart horizontally and 20 m vertically (Cella
1999).

In Figure 4, h and v are the horizontal and
vertical distances between supports P, and P, .

L is the length of the catenary and a = OA

Solution

0

Figure 4

1 Solve for a using Newton-Raphson iteration (38), (39) and (40) with A =100, v =20 and L = 110

f(a) = 2asinh[£} —NIF -t

f(a) = 2{@@[%} - %Cosh[%”

/'(a)

¢ = f(a)/7'(a)

IS

n+l a’n —¢

/(a,)
a =a, — where

n+1 n f/ ( a" )
n a, f(a)
1 50.000000000 9.353581100
2 62.712834768 2.769714918
3 70.409900272 0.452622368
4 72.213222188 0.017347334
5 72.287967555 0.000027743
6 72.288087476 0.000000000

-0.735758882
-0.359840373
-0.250993660
-0.232085745
-0.231343945
-0.231342758

-12.712834768
-7.697065504
-1.803321916
-0.074745367
-0.000119921

0.000000000

Table 1. Values for Newton-Raphson iteration

62.712834768
70.409900272
72.213222188
72.287967555
72.288087476
72.288087476

The solution a = 72.288087476 is achieved after 6 iterations using a starting value a; = 50

2 Solve for x, using (41)
h | v
T, = —+ atanh™ | — | = 63.291060536
2 L
3 Solve for z; using (35) then y,y, and s;,s, using (9) and (10) respectively
r, = 1, —h = —36.708939464
Y = acosh[ﬂ] = 81.81078082, Yy = acosh[ﬁ] = 101.810780818
a a
. xl . 1:2
s = asinh| —| = —38.30713076 s, = asinh| —= | = 71.69286924
a a
4 The sag of the cable below P, is the vertical distance y, — a = 29.522693342

11
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It should be noted that in solving for a using Newton-Raphson iteration care must be taken in selecting an

appropriate starting value a,. An approximation for a can be obtained as follows

= sinh[i]
2a

From (37) we may write

7 —?

2a

3

:':5

7

Using the series expansion for sinhz =z + — + — 4+ — + --- gives

3!

I —?

1

5!

1

7!

=

1

1 A7

2a B

+ -+ —

5 * 5040(2a)7 *

Ignoring terms involving powers of 5 or greater and then rearranging gives

h
a~—
V24

In the example above where h = 100, v = 20 and L = 110 a starting value for a in the Newton-Raphson

h

N2 —v® —h

100

100

iteration could have been a; =

@\/Jnoz — 202 — 100

(42)

= 71.4 rather than a; = 50. This would have

meant fewer iterations before convergence on a = 72.288087476 .

An alternative method of determining the parameter a

Cella (1999) published a short article on the practical determination of the parameters of a catenary and
derived several useful equations that are set out below. Equation (41) above was derived by Cella (1999, eq.
7) as an interim step in the development a transcendental equation

Using (9), (10) and (35) we may write, noting that cosh(—z) = coshz and sinh(—x) = —sinhz

—h h—
s —acosh[x—Q], .1,12—1/—61(305h[3r2 ] or yz—vacosh[ %]
a a a
. T, . Ty —h . h — x,
5, = asinh|—=|, 5, — L = asinh or L —s, = asinh
a a a
and using these equations we can write
h—
v = acosh B —acosh[ %]
a \ a (43)
-z
L = asinh| 2 —l—asinh[ 2]
a a
and dividing one equation by the other gives
h—
cosh B_ cosh[ % ]
v a
= .
sinh ] + sinh[ e ]
a a

12
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Using the hyperbolic identities cosh A — cosh B = ZSinh[ B] h[A 5 B] and
2z, — h
s 2sinh[2h]sinh[ %2 ]
sinhA—l—sinhB—Qsinh[ + } sh[ — ] gives — = ¢ 5 ¢ ; and
QSlnh[JCOSh[ T~ J
a 2a
2z, — h
— = tanh
2a
and solving this equation for z, / a gives
B_t + tanh!| 2 or T, = h +atanh~! |2 (44)
a 2a L 2 L
We can now substitute (44) into the second member of (43) giving (Cella 1999, eq. 7)
L = asinh 1 + tanh ' | 2 || + asinh o tanh~!| (45)
2a L 2a L
and denoting ¢ = tanh™! [%J we have
L=a sinhi—i—q —l—sinhi—q (46)
2a 2a

As before, this equation cannot be solved algebraically for the parameter a, instead a solution using Newton-
Raphson iteration is a practical alternative. For this numerical technique (see above) we have

f(a,)
a, ., =a, — ‘ (47)
+1 fl<an)
where, with ¢ = tanh™! [%]
f(a):a sinhi—i—q —i—sinhi—q - L (48)
2a 2a
o / d .
And the derivative f (a) = d—{f(a)} is
a
h h h h h h
"(a) = sinh| — 4 ¢| — —cosh|— + ¢ | + sinh| — — ¢ | — —cosh| — —
f( ) 2a q] 2a 2a K 2a K 2a 2a K
= sinh i—I—q + sinh i—q —i cosh i—I—q + cosh i—q
2a 2a 2a 2a 2a
Using the hyperbolic identities sinh A 4+ sinh B = ZSinh[A —; B]cosh[A ; BJ and
cosh A + cosh B = 2cosh[AL2B}cosh[A ; B} gives
f’(a) = 2sinh 1 coshq—i 2 cosh 1 cosh g = 2cosh ¢{sinh 1 —icosh e (49)
2a 2a 2a 2a a a

13
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Similarly to the previous method, after solving for a, z, can be found from (44) then z; = z, — h and y,,y,

and s,,s, follow from (9) and (10).

For the example above, a table of values for Newton-Raphson iteration (47), (48) and (49) with A = 100,
v =20 and L = 110 is shown below.

. h . h
f(a):a sinh|—+ ¢ |+ sinh|——¢q|} — L
. f(a’n) 2a 2a . 1|
Qg =) —— where b b X and ¢ = tanh 7
f (aﬂ) f’(a)z?coshq sinh| — | — —cosh| —
2a 2a 2a
n W(2a)+a  h(2a)=q  f(a) f'la)  e=f(a)ff'(a) a,, =0, —c
1 50 1.183862390  0.816137610 9.512127665  -0.748230260 -12.712834768 62.712834768
2 62712834768  0.981147351 0.613422571 2.816662582  -0.365939796 -7.697065504 70.409900272
3 70.409900272  0.893989798  0.526265018 0.460294480  -0.255248093 -1.803321916 72.213222188
4 72.213222188  0.876256366 0.508531586 0.017641378  -0.236019682 -0.074745367 72.287967555
5 72287967555  0.875540434 0.507815654 0.000028213  -0.235265308 -0.000119921 72.288087476
6 72.288087476  0.875539287 0.507814506 0.000000000  -0.235264101 0.000000000 72.288087476

Table 2. Newton-Raphson iteration

The result a = 72.288087476 after 6 iterations is identical to a in the previous iterative scheme that used a

different function f ( a) .

The catenary and the parabolic curve: Curly’s Conundrum No. 15

Curly’s Conundrum No. 15

A power transmission cable, spanning a lake, hangs in a parabolic
arc between pylons A and B. The pylons are 2.4 km apart and the
lowest point of the cable is 1.6 km from A. If the RL’s* of the tops of
the pylons A and B are 500.0 m and 423.2 m respectively, calculate
the minimum clearance if the water level of the lake is 382.0 m.

4 Reduced Levels (elevations above a datum)
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Catenary Curve
The Institution of Surveyors Victoria (ISV) has a news bulletin Traverse that is published quarterly and

circulated to members. In Traverse 321 (March 2019) the puzzle (above) was published as Curly’s
Conundrum No. 15. The solution was published in Traverse 822 (June 2019) and is summarized below:

Solution to Curly’s Conundrum No. 15

1 The power cable hangs in a parabolic curve y = az®> + bz 4+ ¢ where the z,y system has its origin at A
2 AtA y,=0 2,=0hencec=0

At B: yp = —T76.8, x; = 2400 and y, = az} + by (i)
. dy .
At C: gradient o =201, +b=0 (11)
XL

2

. . .. . . . Ty Ty Yp
3 Equations (i) and (ii) can be written as a matrix equation 5 el = that can be solved for a
z
c
1 —T 0.000040
and b, where, in matrix notation: = ; 23 Yp =
2 — 2ugn, |20 «h |0 ] |~0.128000

4 RL, = RL, +y, = 500.0 + (a(1600)2 +b(1600) + 0) = 397.6

5 Minimum clearance is 397.6 — 382.0 = 15.6 m

Catenary v’s Parabola

Of course, we know that the power cable will not hang in a parabolic arc between the supports, but instead
will hang in a catenary. How close are the two curves?

To make a comparison, we need to know the length of cable in the parabolic curve in Curly’s Conundrum

No. 15 and from Appendix B, the formula for arc length of a parabolic curve y = az® 4+ bc + ¢ from z = 0

1 | (2at +0)y1+ (20t + b +ln[,/1+(2at+b)2 +2at+b]

| (W (VT )]

to x =1 is

(50)

So for a = 0.000040, b = —0.128000, ¢ = 0 and ¢ = 2400 we have (2at +b)" = (0.064)" = 0.004096 and

1+ 5% =1.016384000 giving

1 0.064+/1.004096 + 111(\/1.004096 + 0.064)
4(0.000040) | (—0.128v1.016384 + In(V1.016384 + (—0.128)

= 6250{0.128087328 — (—0.256697343 ) }
= 2404.90418987 m

y
T T 2400
1600

800

RS
N
=
~

_N\76.8

parabola
y = ar?+ br + ¢ 9404.904

low point

Figure 5. The parabolic arc in Curly’s Conundrum No. 15
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We can now use this value (rounded to nearest mm) as the length of a catenary L = 2404.904 m between
supports P, and P, separated by h = 2400 m and v = —76.8 m to determine the parameter a in the

catenary equation. As before, the solution for a is iterative and the other values of the catenary are set out

below

1 Solve for a using Newton-Raphson iteration (38), (39) and (40) with A = 2400, v = —76.8 and

L = 2404.904

. h
a,,, =a, — f(an) here f(a) = 2asmh[%]_ 2 _ 2
n+ n ;
f'(a,) f'(a) = Q{Sinh[ﬁJ_iCOSh[i”
2a 2 %

A starting value for a can be calculated from (42) as

a = LU S 12515 (nearest whole number)
V24 N2 =0 —h

" a, /(a) /'(a) ¢=I(a)/1'(a)

1 12515 0.001866558 -0.000588246 -3.173088943 12518.173088943
2 12518.173088943  0.000000710 -0.000587799 -0.001208021 12518.174296964
3 12518.174296964  0.000000000 -0.000587799 0.000000000 12518.174296964

Table 3. Values for Newton-Raphson iteration

The solution ¢ = 12518.174296964 is achieved after 3 iterations using a starting value a, = 12515

2 Solve for x, using (41)

2 =" 4 atann—t| 2| = 800.009204777
29 L

3 Solve for z; using (35) then y,,y, and s;,s, using (9) and (10) respectively
¥ = 2y, —h = —1599.900705223

Y = acosh[ﬁ] — 12620.552181711, g, = acosh| -2 | = 12543.752181711
a a

s

s = asinh
a

] = —1604.259842457 8y = asinh[x—Q] = 800.644157543
a

4 The sag of the cable below P, is the vertical distance y, —a = 102.377884747

These values are shown (rounded to nearest mm) in Figure 6.
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Y &
A |
1599.901 800.099 093
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N | P,
6 N Y 2
%2, S o
catenary ol v - y
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§ low point
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[
™
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™ z
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Figure 6. The catenary for Curly’s Conundrum No. 15

The following table shows the sag® for a parabola and the catenary and the difference between the two. If
the difference is positive the parabola is above the catenary. If the difference is negative then the parabola is

below the catenary.

Parabola Catenary
x y (sag) horiz dist from g0 related to P
P difference

0 0.000 0 0.000 0.000
200 -24.000 200 -24.021 0.021
400 -44.800 400 -44.827 0.027
600 -62.400 600 -62.423 0.023
800 -76.800 800 -76.813 0.013
1000 -88.000 1000 -88.001 0.001
1200 -96.000 1200 -95.990 -0.010
1400 -100.800 1400 -100.782 -0.018
1599.900705  -102.400 1599.900705 -102.377885** -0.022
1600 -102.400000* 1600 -102.378 -0.022
1800 -100.800 1800 -100.779 -0.021
2000 -96.000 2000 -95.983 -0.017
2200 -88.000 2200 -87.991 -0.009
2400 -76.800 2400 -76.800 0.000

Table 4. Differences in sag between Parabola and Catenary for Curly’s Conundrum No. 15
(*) and (**) are low points of parabola and catenary respectively

5 Sag is the vertical distance between the support (P or P2) and the curve (parabola or catenary).
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Conclusion

The catenary is a curve with a relatively simple equation that was discovered by scientists and
mathematicians of the 16 and 17t centuries wishing to understand the physics of motion of bodies or the
shapes of flexible objects under the action of gravity. This paper has given some history of the catenary’s
discovery and some of the great mathematicians involved; Galileo, Huygens, Leibniz, Jacob and Daniel
Bernoulli prominent amongst many. Two modern methods of derivation of the catenary equations have been
provided and the geometry of the curve explained. In addition, examples of calculations are shown as well as
a comparison between a catenary and a parabolic arc for a hanging cable. The reference list provides further
reading on the topic and appendices show details of associated topics (hyperbolic functions and length of
parabolic arc) as well as some extracts from historical writings on the topic.

References

Barnett, Janet Heine, (2004), ‘Enter, stage center: the early drama of the hyperbolic functions’, Mathematics
Magazine, Vol. 77, No. 1, (February 2004), pp. 15-29
https://www.maa.org/sites/default /files /321922717729.pdf.bannered.pdf [accessed 23 Jul 2019]

Bernoulli, Johann, (1692), ‘Lecture 36: On Catenaries and Lecture 37: Continuation of the Same Subject, On
Catenaries’, Lectiones mathematicae de methodo integralium (Mathematical lectures concerning the
method of integration), Paris, 1691-1692. In ‘Lectures on the integral calculus’, translated by William
A. Ferguson, Jr., 21°¢ Century Science & Technology, Vol. 17, No. 1. (Spring 2004), pp. 34-42, 215t
Century Science Associates, Leesburg, Va, USA.
https://21sci-tech.com/Articles%202005/Bernoulli.pdf [accessed 23 Jul 2019]

Bukowski, J., (2008), ‘Christiaan Huygens and the Problem of the Hanging Chain’, The mathematical
Associarion of America’, Vol. 39, No. 1. (January 2008), pp. 1-11.
http://jesites.juniata.edu/faculty /bukowski/leiden/cmj002-011.pdf [accessed 23 Jul 2019]

‘Catenary’, (2019), Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org /wiki/Catenary [accessed 11 Jul 2019]

Cella, P., (1999), ‘Reexamining the Catenary’, The College Mathematics Journal, Vol. 30, No. 5. (November
1999), pp. 391-393.
https://www.maa.org/sites/default/files /0746834252964.di020789.02p0527v.pdf [accessed 23 Jul 2019]

Fitch, Mark A., (2016), ‘Derivation of the inverse hyperbolic trig functions’, Calculus II (Math A252), Spring
2016, Notes, Examples and Sundries, Department of Mathematics & Statistics, College of Arts &
Sciences, University of Alaska Anchorage, 3211 Providence Drive SSB 154 Anchorage, AK 99508.
http://www.math.uaa.alaska.edu/~afmaf/classes/math252 /notes/InverseHyperbolic.pdf [accessed 31
Jul 2019]

Galileo Galilei, (1638), Dialogues Concerning Two New Sciences, Translated from the Italian and Latin into
English by Henry Crew and Alfonso De Salvio with an introduction by Antonio Favaro, University of
Padua, The Macmillan Company, New York, 1914
https: //ia802304.us.archive.org/17/items/dialoguesconcern00galiuoft /dialoguesconcern00galiuoft. pdf
[accessed 23 Jul 2019]

Huygens, Christiaan, (1646), Oeuvres Completes de Christiaan Huygens, Société Hollandiase des Sciences,
Vol. 1 (Correspondence 1638-1656, Items No. 20, No. 21, No. 22, pp. 34-42), Martinus Nijhoff 1888.
https://ia802702.us.archive.org/25 /items/oeuvrescomplte01huyguoft /oeuvrescomplte0lhuyguoft. pdf
[accessed 24 Jul 2019]

Lamb, Sir Horace, (1942), An Elementary Course of Infinitesimal Calculus, Rev. ed., Cambridge University
Press
https://archive.org/details/ AnElementaryCourseOfInfinitesimalCalculus [accessed 11 Jul 2019]

18



Catenary Curve

Leibniz, G. W., (1691), ‘The string whose curve is described as bending under its own weight, and
the remarkable resources that can be discovered from it by however many proportional
means and logarithms’, Acta Eruditorum, Leipzig, June 1691, pp. 277-291. In ‘Two papers
on the catenary curve and logarithmic curve’, Fidelio Magazine, Vol. 10, No. 1. (Spring
2001), pp. 54-61, translated by Pierre Beaudry, Schiller Institute, Inc., 2001.
https://archive.schillerinstitute.com/fidelio archive/2001/fidv10n01-2001Sp/fidv10n01-2001Sp 054-
gw_leibniz_two_ papers_on_the cat.pdf [accessed 23 Jul 2019]

Mukhopadhyay, Utpal, 2001, ‘Bernoulli Brothers, Jacob I and Johann I: a pair of giant mathematicians’,
Resonance, Vol. 6, No. 10, (October 2001), pp. 29-37.
https://www.ias.ac.in/article /fulltext /reso/006/10,/0029-0037 [accessed 23 Jul 2019]

Nahin, P. J., (2004), When Least is Best, Princeton University Press, Princeton, New Jersey

Peiffer, Jeanne, (2006), ‘Jacob Bernoulli, teacher and rival of his brother Johann’, Electronic Journ@l for
History of Probability and Statistics, Vol. 2, No. 1, (November 2006), pp. 1-22.
http://www.jehps.net /Novembre2006/Peifferanglais3.pdf [accessed 23 Jul 2019]

Yates, R. C., (1959), ‘The Catenary and the Tractrix’, The American Mathematical Monthly, Vol. 66, No. 6.
(Jun. — Jul., 1959), pp. 500-505.
https://www.mimuw.edu.pl/~szymtor /grl.2007 /tractrix%20and %20catenary.pdf [accessed 23 Jul 2019]

19



Catenary Curve

Appendix A: Hyperbolic functions

The basic functions are the hyperbolic sine of z, denoted by sinh x , and the hyperbolic cosine of = denoted
by cosh z ; they are defined as

ez _ 671 eZz -1 1— 6721'
sinhz = = — = -
2¢" 2e " 51
e’ +e* e 41 14e (51)
coshz = = = :
2¢e” 2¢"

Other hyperbolic functions are in terms of these

. T _ T 2r T -z 2z
tanh 7— bthSE:e e _€ 17 coth s — L _ete _et 1
coshz ¢ 4 ¢ @ e 41 tanhz % — 7 e2r 1 (52)
1 2 2e* 1 2 2e*
sechx = = = , cschx = = =
coshz ¢ +¢7" e +1 sinhz e —e™® e —1
And
cosh?z —sinh? z =1, sech?z + tanh®z =1, coth? z — csch’z = 1 (53)

The inverse hyperbolic function of sinhz is sinh™' z and is defined by sinh™* (sinhz) = x. Similarly

cosh ™'z and tanh™!'z are defined by cosh™ (coshx) =z and tanh™! (tanhz) = x ; both requiring x > 0

and as a consequence of the definitions (see, for example, Fitch 2016)

sinhfllen(x—l— x2—|—1) —00 < 1T <00
cosh™ 'z = ln(x +a? —1) x>1 (54)
1+=2

1—=z

tanhlx—%ln[ } —-l<z<l1

A useful identity linking circular and hyperbolic functions is obtained by considering the following.

Using the trigonometric addition and double angle formula we have

2
1 1 1 ol
COS< X + SInx (cosfx—i—smfz) 1+singz
lntan(iw—i—%z):ln = —2_ =1n 2 2 =In (55)
cos z —sinjz COSZ%Z—SiHZ%Z cos

Also, replacing = with tanz in the definition of the inverse hyperbolic functions in equations (54) we have

1+sinz

sinh ! tanz = ln(tanx + V1 + tan? w) = ln(tanx + sccx) =In (56)
cos
. 1+ sinz . .
And equating In—————= from equations (55) and (56) gives
cos
lntan(iw—l—%w):ln(tanw—l—sccx):sinh’ltanx (57)
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Appendix B: Arc Length of a Parabolic Curve

Figure B1. Parabolic curve of length s

’ 2
The differential arc length ds = +/dz® + dy? = dz,|1 + [%J and integration gives the arc length sof a curve
x

as
t dv
Y
s = 14+ |2 dz 58
/ [d] (58)
0
And for a parabolic curve y = az® + bz + c. % = 2ax + b then the parabolic arc length is
x
t
5:f 1+(2ax+b) dz (59)
0

Let 2az + b = tanu then (an +b)2 = tan’u and 1 +(2ax +b)2 =1+ tan’u = sec®u. Also

i(?ax + b) = i(tanu)% and dx = isec2 u du and using these results in (59) gives
dx du dx 2a

t
5= {mdz = fsecuise&u du = ifsec?su du

Using standard integral results

1

g =11

~secutanu + %ln(secu + tanu)]

¥
=
(%)

=t

:Llé(Qaz—i—b) 1—|—(2a$+b)2 —|—éln[ 1+(2a$+b)2 +2ax+b”

a

)

z=0
t

_ 1
4a

(Qaz—i—b) 1+(2az+b)2 +ln[ 1+(2az+b)2 —|—2az+b”
0

And the arc length of a parabolic y = az® + bc + ¢ curve from z =0 to z =t is

o (2ot )i 2 0 (20 20010
0|0 (VT )
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Appendix C: Extracts from Galileo’s Discorsi and Acta Eruditorum (1690)

A translation of Discorst

DIALOGUES

TWO NEW SCIENCES

BY
GALILEO g}‘ALILEI

Translated from the Italian and Latin into English by
HENRY CREW AND ALFONSO DE SALVIO

of Northwestern University

WITH AN INTRODUCTION BY ‘
ANTONIO FAVARO |
of the University of Padua.

“I think with your friend that it has been
of late too much the mode to slight the
learning of the ancients.”

Benjamin Franklin, Phkil. Trans.
64, 445. (1774.)

LA
Nom Yok J%L

THE MACMILLAN COMPANY )7 1
1914

Al rights reserved

The following pages (pp.148-149) are a discussion between Sagredo (SAGR.) and Salviati (SALV.) two of the
three people (Simplicio is not present here) that Galileo used to put forward explanations, questions and
theories on various topic of science.
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148 THE TWO NEW SCIENCES OF GALILEO

many propositions. This same theorem has also been recently
established by Luca Valerio,* the Archimedes of our age; his
demonstration is to be found in his book dealing with the centers
of gravity of solids.

Sarv. A book which, indeed, is not to be placed second to any
produced by the most eminent geometers either of the present
or of the past; a book which, as soon as it fell into the hands of
our Academician, led him to abandon his own researches along
these lines; for he saw how happily everything had been treated
and demonstrated by Valerio.

-~ [183]
- SaGr. When I was informed of this event by the Academician

himself, I begged of him to show the demonstrations which he

had discovered before seeing Valerio’s book; but in this I did

not succeed.

Sarv. I have a copy of them and will show them to you; for
you will enjoy the diversity of method employed by these two
authors in reaching and proving the same conclusions; you will
also find that some of these conclusions are explained in different
ways, although both are in fact equally correct.

Sacr. I shall be much pleased to see them and will consider
it a great favor if you will bring them to our regular meeting.
But in the meantime, considering the strength of a solid formed
from a prism by means of a parabolic section, would it not, in
view of the fact that this result promises to be both interesting
and useful in many mechanical operations, be a fine thing if you
were to give some quick and easy rule by which a mechanician
might draw a parabola upon a plane surface?

Savv. There are many ways of tracing these curves; I will
mention merely the two which are the quickest of all. One of
these is really remarkable; because by it I can trace thirty
or forty parabolic curves with no less neatness and precision,
and in a shorter time than another man can, by the aid of a
compass, neatly draw four or six circles of different sizes upon

paper. I take a perfectly round brass ball about the size of a *

walnut and projeét it along the surface of a metallic mirror held

* An eminent Italian mathematician, contemporary with [Gng».lileoi
rans.

SECOND DAY 149

in a nearly upright position, so that the ball in its motion will
press slightly upon the mirror and trace out a fine sharp para-
bolic line; this parabola will grow longer and narrower as the
angle of elevation increases. The above experiment furnishes
clear and tangible evidence that the path of a projectile is a
parabola; a fact first observed by our friend and demonstrated
by him in his book on motion which we shall take up at our next
meeting. In the execution of this method, it is advisable to
slightly heat and moisten the ball by rolling in the hand in order
that its trace upon the mirror may be more distinc¢t.
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[186]

The other method of drawing the desired curve upon the face
of the prism is the following: Drive two nails into a wall at
a convenient height and at the same level; make the distance
between these nails twice the width of the rectangle upon which
it is desired to trace the semiparabola. Over these two nails
hang a light chain of such a length that the depth of its sag
is equal to the length of the prism. This chain will assume the
form of a parabola,* so that if this form be marked by points
on the wall we shall have described a complete parabola which
can be divided into two equal parts by drawing a vertical line
through a point midway between the two nails. The transfer
of this curve to the two opposing faces of the prism is a matter
of no difficulty; any ordinary mechanic will know how to do it.

By use of the geometrical lines drawn upon our friend’s
compass,f one may easily lay off those points which will locate
this same curve upon the same face of the prism.

Hitherto we have demonstrated numerous conclusions per-
taining to the resistance which solids offer to fracture. As
a starting point for this science, we assumed that the resistance

offered by the solid to a straight-away pull was known; from

this base one might proceed to the discovery of many other
results and their demonstrations; of these results the number to

* It is now well known that this curve is not a parabola but a catenary
the equation of which was first given, 49 years after Galileo’s death, by
James Bernoulli. [Trans.]

t The geometrical and military compass of Galileo, described in Nat.
Ed. Vol. 2. [Trans.]

Acta Eruditorum

The first monograph on thefMus learned journal and scientific periodical Acta Eruditorum,
the German counterpart of the Journal des S¢avans and the Philosophical Transactions:

(A.) HUB. LAEVEN

THE “ACTA ERUDITORUM” UNDER THE EDITORSHIP OF OTTO MENCKE
The history of an international learned journal between 1682 and 1707
Translated from the Dutch by Lynne Richards. With a summary in German
With a list of all - hitherto anonymous — contributors, an inventory of the editor’s correspondence,
a bibliography and an index of names
From 1682, for precisely a century, the Latin Acta Eruditorum, one of the most important international
journals in the period of the Enlightenment, was published in Leipzig. The founder and first
editor-in-chief was Otto Mencke (1644-1707), professor of philosophy at the university of Leipzig.
This authoritative journal provided chiefly mathematicians, physicists and other natural scientists,
among them Leibniz, with an international platform on which they could present theirlatest discoveries
and ideas. The journal also provides a survey of numerous interesting publications in all other areas
of scholarschip.

In this study, which is the result of the most thorough research into the Acta Eruditorum undertaken
to date, the author examines the history of the journal during the first twenty-five years of its existence,
when Otto Mencke was the editor-in-chief. The reader is given detailed information about the genesis
of the periodical, and about the members of the editorial circle and the way in which they set about
their work. The editorial policy is analyzed in depth, and there is a survey of the international network
of correspondents on whom the editors could call. The discovery of a number of annotated copies of
the journal has made it possible to establish the names of all the hitherto anonymous reviewers and
authors of articles. Several appendices, including an index of contributors and an inventory of the
first editor’s correspondence, complete the book.

: E I S
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From Acta Eruditorum, May 1690, bottom of p. 217

The “J.B.” is Jacob Bernoulli

ANALYSIS PROBLEMATIS ANTEHAC PROPOSITI,
de invention linea descensus a corpore gravi percurrendae uniformiter, sic ut temporibus aequalibus aequales
altitudines emetiatur: and alterius cujusdam Problematis Propesitio

Acta Eruditorum, May 1690, top of p. 218

Acta Eruditorum, May 1690, bottom of p.219

Problema vicissim proponendum hoc esto:
Invenire, quam curvam referat funis laxus & inter duo puncta fixae libere suspensus. Sumo autem, funem
esse lineam in omnibus suis partibus facillime flexilem.



Catenary Curve

Some Latin translations:

Problem vicissim

proponendum

hoc esto

Invenire, quam curvam referat funis laxus
inter duo puncta fixae libere suspensus

Sumo autem
funem esse lineam
in omnibus suis
suis partibus
facillime flexilem

On the other hand problem

displayed

to be

Find the curve resembling a loose cord
freely suspended between two fixed points

take it

a rope line
in all

its parts
easily pliable
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