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ABSTRACT 

 

In Australia, large-scale topographic mapping and survey coordination is based on 

rectangular grids overlaying conformal map projections; e.g., the Australian Map 

Grid (AMG) and Map Grid Australia (MGA) used Australia wide and the Integrated 

Survey Grid (ISG) used in New South Wales overlay Transverse Mercator 

projections and VICGRID, sometimes used in Victoria, overlays a Lambert 

Conformal Conic projection.  As spatial data experts, surveyors require a sound 

understanding of projections, grids and associated formulae; this paper provides a 

brief history of geodesy and the shape of the Earth, information on geodetic datums, 

some theory of projections and a detailed development of the formulae for the 

Transverse Mercator projection of the ellipsoid that should enhance the practical 

knowledge of surveyors. 

 

 

INTRODUCTION 

 

In Australia, large-scale topographic mapping and survey coordination is based on 

rectangular grids overlaying conformal map projections; e.g., the Australian Map 

Grid (AMG) and Map Grid Australia (MGA) used Australia wide, the Integrated 

Survey Grid (ISG) used in New South Wales and VICGRID sometimes used in 

Victoria.  The AMG and MGA are grids superimposed over Universal Transverse 

Mercator (UTM) projections, the ISG overlays a Transverse Mercator (TM) 

projection and VICGRID overlays a Lambert Conformal Conic projection with two 
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standard parallels.  Other projections and grids have been or are being used for 

mapping and coordination in Australia but their use has either been superseded, or is 

local in extent.  Only the TM and UTM projections are considered in this paper. 

 

A sound knowledge of map projections and grids requires an understanding of the 

mathematical nature of projections and the size and shape of the Earth, since in our 

context; a projection is a mathematical transformation of coordinates on a reference 

surface approximating the Earth to coordinates on a projection plane.  The reference 

surface is an ellipsoid (a surface of revolution created by rotating an ellipse about its 

minor axis) representing the "mathematical" figure of the Earth.  This paper gives a 

brief history of the determination of the size and shape of the Earth, geometry and 

formulae of ellipsoids, information on geodetic datums and coordinate systems in use 

in Australia and an outline of the mathematical theory of map projections. 

 

The main body of the paper is a detailed derivation of the formulae for a TM 

projection of the ellipsoid giving X,Y coordinates, grid convergence and point scale 

factor.  In Australia, these equations are commonly referred to as Redfearn's 

formulae, published by J.C.B Redfearn of the Hydrographic Department of the 

British Admiralty in the Empire Survey Review (now Survey Review) in 1948 

(Redfearn 1948).  Redfearn noted in his five-page paper that: "…formulae of the 

projection itself have been given by various writers, from Gauss, Schreiber and 

Jordan to Hristow, Tardi, Lee Hotine and others – not, it is to be regretted, with 

complete agreement in all cases."  Redfearn's formulae, accurate anywhere within 

zones of 10°–12° extent in longitude, removed this "disagreement" between previous 

published formulae and are regarded as the definitive TM formulae.  Redfearn 

provided no method of derivation but mentioned techniques demonstrated by Lee 

and Hotine in previous issues of the Empire Survey Review.  In 1952, the American 

mathematician Paul D. Thomas published a detailed derivation of the TM formulae 

in Conformal Projections in Geodesy and Cartography, Special Publication No. 251 of 

the Coast and Geodetic Survey, U.S. Department of Commerce (Thomas 1952); 

Thomas' work can be regarded as the definitive derivation of the TM formulae. 

 

Surveying and geodesy textbooks, with the notable exception of G.B. Lauf's Geodesy 

and Map Projections (Lauf 1983), often have only an "outline" of the mathematics of 

the TM projection and a statement of formula – if there is any mention of the 
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projection at all.  Consequently, the mathematics of the TM projection is not well 

known; not that it was ever a "hot" topic of conversation amongst surveyors, or 

indeed students, who see it as masses of calculus saddled with turgid algebra.  Help is 

at hand though: in the form of mathematical computer packages such as MAPLE® 

that relieve the interested student of the drudgery (some find it a beauty) of 

mathematical manipulation.  In this paper, the method of derivation follows that of 

Thomas (1952) and Lauf (1983) but all the TM formulae (coordinates, grid 

convergence and point scale factor) were obtained using MAPLE; reducing the work 

from pages of algebra to, in some cases, half a dozen computer commands. 

 

Whilst this paper does not provide any instructions or commands specific to 

mathematical computer packages in the derivation of formulae, it is hoped that it will 

be of some use to those who wish to demonstrate (to students) the power of 

mathematical computer packages versus the traditional methods of solution.  In 

addition, it is hoped that this paper will supplement the excellent technical manuals 

available to practitioners in Australia: The Australian Geodetic Datum Technical 

Manual, Special Publication 10 (NMC 1986), Geocentric Datum of Australia 

Technical Manual – Version 2.2 (ICSM 2002) and The Map Grid of Australia 1994 – 

A Simplified Computation Manual (Land Vic 2003).  The latter two publications are 

available online via the Internet with links to additional information sources and 

Microsoft® Excel spreadsheets for computations. 

 

 

A BRIEF HISTORY OF GEODESY AND THE ELLIPSOIDAL SHAPE OF THE 

EARTH 

 

Geodesy is the scientific study of the size and shape of the Earth.  Since ancient 

times, philosophers and scientists have attempted to determine its shape and size.  

Ancient methods ranged from comparisons with other heavenly bodies (Pythagoras, 

6th century BC) to the measurement of the incident angles of rays of sunlight at 

selected points on the Earth's surface (Eratosthenes 3rd century BC).  Later 

techniques involved astronomical observations and measured lengths of meridian arcs, 

e.g. the French Academy of Sciences expeditions in the 1700's verifying Newton's 

theoretical deduction of an ellipsoidal Earth based on his Universal Law of 
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Gravitation.  The latest methods rely on gravimetric observations and satellite 

observations.  The following is an edited extract from the Encyclopaedia Britannica 

(Britannica® CD 99) outlining some of the historical determinations of the Earth's 

shape. 

 
Spherical era 

Credit for the idea that the Earth is spherical is usually given to Pythagoras (flourished 6th 

century BC) and his school, who reasoned that, because the Moon and the Sun are spherical, the 

Earth is too.  Notable among other Greek philosophers, Hipparchus (2nd century BC) and 

Aristotle (4th century BC) came to the same conclusion.  Aristotle devoted a part of his book De 

caelo (On the Heavens) to the defence of the doctrine.  He also estimated the circumference of the 

Earth at about 400,000 stadia.  Since the Greek stadium varied in length locally from 154 to 215 

metres, the accuracy of his estimate cannot be established.  This seems to be the first scientific 

attempt to estimate the size of the Earth.  Eratosthenes (3rd century BC), however, is considered 

to be one of the founders of geodesy because he was the first to describe and apply a scientific 

measuring technique for determining the size of the Earth.  He used a simple principle of 

estimating the size of a great circle passing through the North and South poles.  Knowing the 

length of an arc and the size of the corresponding central angle that it subtends, one can obtain 

the radius of the sphere from the simple proportion that length of arc to size of the great circle 

(or circumference, , in which R is the Earth's radius) equals central angle to the angle 

subtended by the whole circumference (360°).  In order to determine the central angle α , 

Eratosthenes selected the city of Syene (modern Aswan on the Nile) because there the Sun in 

midsummer shone at noon vertically into a well.  He assumed that all sunrays reaching the Earth 

were parallel to one another, and he observed that the sunrays at Alexandria at the same time 

(midsummer at noontime) were not vertical but lay at an angle 1/50 of a complete revolution of 

the Earth away from the zenith. Probably using data obtained by surveyors (official pacers), he 

estimated the distance between Alexandria and Syene to be 5,000 stadia.  From the above 

equation Eratosthenes obtained, for the length of a great circle, 50 × 5,000 = 250,000 stadia, 

which, using a plausible contemporary value for the stadium (185 metres), is 46,250,000 metres.  

The result is about 15 percent too large in comparison to modern measurements, but his result 

was extremely good considering the assumptions and the equipment with which the observations 

were made. 

2 Rπ

 

Ellipsoidal era 

The period from Eratosthenes to Picard (the French scientist who, in the late 1600's, measured a 

short meridian arc by triangulation in the vicinity of Paris) can be called the spherical era of 

geodesy.  Newton and the Dutch mathematician and scientist Christiaan Huygens began a new 

ellipsoidal era.  In Ptolemaic astronomy it had seemed natural to assume that the Earth was an 

exact sphere with a centre that, in turn, all too easily became regarded as the centre of the entire 

universe.  However, with growing conviction that the Copernican system is true – the Earth 

moves around the Sun and rotates about its own axis – and with the advance in mechanical 
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knowledge due chiefly to Newton and Huygens, it seemed natural to conceive of the Earth as an 

oblate spheroid.  In one of the many brilliant analyses in his Principia, published in 1687, 

Newton deduced the Earth's shape theoretically and found that the equatorial semi-axis would be 

1/230 longer than the polar semi-axis (true value about 1/300).  Experimental evidence 

supporting this idea emerged in 1672 as the result of a French expedition to Guiana.  The 

members of the expedition found that a pendulum clock that kept accurate time in Paris lost 2 

1/2 minutes a day at Cayenne near the Equator.  At that time no one knew how to interpret the 

observation, but Newton's theory that gravity must be stronger at the poles (because of closer 

proximity to the Earth's centre) than at the Equator was a logical explanation.  It is possible to 

determine whether or not the Earth is an oblate spheroid by measuring the length of an arc 

corresponding to a geodetic latitude difference at two places along the meridian (the ellipse 

passing through the poles) at different latitudes.  The French astronomer Gian Domenico Cassini 

and his son Jacques Cassini made such measurements of arc in France by continuing the arc of 

Picard north to Dunkirk and south to the boundary of Spain.  Surprisingly, the result of that 

experiment (published in 1720) showed the length of a meridian degree north of Paris to be 

111,017 metres, or 265 metres shorter than one south of Paris (111,282 metres).  This suggested 

that the Earth is a prolate spheroid, not flattened at the poles but elongated, with the equatorial 

axis shorter than the polar axis.  This was completely at odds with Newton's conclusions.  In 

order to settle the controversy caused by Newton's theoretical derivations and the measurements 

of Cassini, the French Academy of Sciences sent two expeditions, one to Peru led by Pierre 

Bouguer and Charles-Marie de La Condamine to measure the length of a meridian degree in 1735 

and another to Lapland in 1736 under Pierre-Louis Moreau de Maupertuis to make similar 

measurements.  Both parties determined the length of the arcs using the method of triangulation.  

Only one baseline, 14.3 kilometres long, was measured in Lapland, and two baselines, 12.2 and 

10.3 kilometres long, were used in Peru.  Astronomic observations for latitude determinations 

from which the size of the angles was computed were made using instruments with zenith sectors 

having radii up to four metres.  The expedition to Lapland returned in 1737, and Maupertuis 

reported that the length of one degree of the meridian in Lapland was 57,437.9 toises.  (The toise 

was an old unit of length equal to 1.949 metres.)  This result, when compared to the 

corresponding value of 57,060 toises near Paris, proved that the Earth was flattened at the poles.  

Later, large errors were found in the measurements, but they were in the "right direction."  After 

the expedition returned from Peru in 1743, Bouguer and La Condamine could not agree on one 

common interpretation of the observations, mainly because of the use of two baselines and the 

lack of suitable computing techniques.  The mean values of the two lengths calculated by them 

gave the length of the degree as 56,753 toises, which confirmed the earlier finding of the 

flattening of the Earth.  As a combined result of both expeditions, these values have been 

reported in the literature: semi-major axis, a = 6,397,300 metres, flattening, f = 1/216.8.  Almost 

simultaneously with the observations in South America, the French mathematical physicist 

Alexis-Claude Clairaut deduced the relationship between the variation in gravity between the 

Equator and the poles and the flattening.  Clairaut's ideal Earth contained no lateral variations 

in density and was covered by an ocean, so that the external shape was an equipotential of its 

own attraction and rotational acceleration.  Clairaut's result, accurate only to the first order in f, 
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clearly showed the relationship between the variations of gravity at sea level and the flattening.  

Later workers, particularly Friedrich R. Helmert of Germany, extended the expression to include 

higher order terms, and gravimetric methods of determining f continued to be used, along with 

arc methods, up to the time when Earth-orbiting satellites were employed to make precise 

measurements.  Numerous arc measurements were subsequently made, one of which was the 

historic French measurement used for definition of a unit of length.  In 1791 the French National 

Assembly adopted the new length unit, called the metre and defined as 1:10,000,000 part of the 

meridian quadrant from the Equator to the pole along the meridian that runs through Paris.  For 

this purpose a new and more accurate arc measurement was carried out between Dunkirk and 

Barcelona in 1792-98 by Delambre and Méchain.  These measurements combined with those from 

the Peruvian expedition yielded a value of 6,376,428 metres for the semi-major axis and 1/311.5 

for the flattening, which made the metre 0.02 percent "too short" from the intended definition.  

The length of the semi-major axis, a, and flattening, f, continued to be determined by the arc 

method but with modification for the next 200 years.  Gradually instruments and methods 

improved, and the results became more accurate.  Interpretation was made easier through 

introduction of the statistical method of least squares. 

 

For those with an interest in the history of geodesy the book The Measure of All 

Things (Alder 2002) has an interesting account of the determination of the size of the 

Earth and the definition of the metre by the French scientists Delambre and Méchain 

in the 1790's.  A concise treatment of the history of geodesy, with a technical flavour, 

can be found in G.B. Lauf's book Geodesy and Map Projections (Lauf 1983). 

 

 

GEOMETRY OF ELLIPSOIDAL REFERENCE SURFACE OF THE EARTH 

 

An ellipsoid, a surface of revolution created by rotating an ellipse about its minor 

axis, is regarded as the simplest mathematical surface that is the closest 

approximation to the actual size and shape of the Earth.  The size and shape of an 

ellipsoid can be defined by specifying pairs of geometric constants; (i) semi-major axis 

a and flattening f, or (ii) semi-major axis a and eccentricity squared e2 or (iii) semi-

major axis a and semi-minor axis b.  Figure 1 shows an ellipsoid with major and 

minor axes 2a and 2b respectively and the following relationships will be useful. 
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Ellipsoid Relationships and Formulae 

 

Referring to Figure 1: 

 

(i) O is the centre of the ellipsoid, OEMG is the equatorial plane of the ellipsoid 

(the reference plane for latitudes), ONG is the Greenwich meridian plane (the 

reference plane for longitudes) and ONM is the meridian plane of P. 

(ii)  and ON  are semi-major and semi-minor axes of the 

ellipsoid respectively. 

OE OG OM a= = = b=

(iii) PH is the ellipsoidal normal and PQ  is the ellipsoidal height.  Q is the 

projection of P onto the ellipsoid via the normal. 

h=

(iv)  and  are the radii of curvature in the prime vertical 

and meridian planes of P respectively. 

 (nu)HQ ν=  (rho)CQ ρ=

(v) The normal PH intersects the equatorial plane at D and the angle PDM is the 

latitude φ  (phi) of P. 

(vi) The longitude λ  (lambda) of P is the angle MOG, i.e., the angle between the 

meridian plane of P and the Greenwich meridian. 

(vii) ,  and 2 sinOH eν φ= 2DH eν= ( )21DQ eν= −  

(viii) The x,y,z Cartesian axes are shown with the z-axis passing through the North 

pole.  The x-y plane is the Earth's equatorial plane and the x-z plane is the 

Greenwich meridian plane.  The x-axis passes through the intersection of the 

Greenwich meridian and the equator and the y-axis is advanced 90º eastwards 

along the equator.  The longitude of P is the angular measure between the 

Greenwich meridian plane and the meridian plane passing through P and the 

latitude is the angular measure between the equatorial plane and the normal to 

the datum surface passing through P.   

Longitude is measured 0º to 180º positive east and negative west of the 

Greenwich meridian and latitude is measured 0º to 90º positive north, and 

negative south of the equator. 
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Figure 1.  Reference ellipsoid 

 

 

The following relationships between geometric constants of the ellipsoid are also of 

use 

 

 flattening a bf
a
−=  (1) 

 semi-minor axis  ( )1b a f= −  (2) 

 first eccentricity squared (
2 2

2
2 2a be f

a
−= = − )f  (3) 

 

The radii of curvature of the prime vertical plane ( )ν  and the meridian plane ( )ρ  are 

 
( )

1
22 21 sin

a

e
ν

φ
=

−
 (4) 

 
( )

( )
3
2

2

2 2

1

1 sin

a e

e
ρ

φ

−
=

−
 (5) 
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The x,y,z Cartesian coordinates of P are given by 

 

( )

( )

( )2

cos cos

cos sin

1

x h

y h

z e h

ν φ

ν φ

ν

= +

= +

⎡= − + sin

λ

λ

φ⎤⎢ ⎥⎣ ⎦  (6) 

The meridian arc length between two points  and  is given by the integral 1φ 2φ

 
( )

( )
2 2

1 1

2

3 22 2

1
meridian arc length

1 sin

a e
d d

e

φ φ

φ φ

ρ φ φ
φ

−
= =

−∫ ∫  

This integral can only be evaluated by an expansion in series, followed by term-by-

term integration.  It is usual to set the lower limit of integration to zero to give the 

meridian distance m from the equator to a point of latitude φ  (radians) 

 

{
( ) }

2 4 6 2 4 6

4 6 6

1 3 5 3 1 151 s
4 64 256 8 4 128

15 3 35sin 4 sin 6
256 4 3072

m a e e e e e e

e e e

φ φ

φ φ

⎛ ⎞ ⎛⎟ ⎟⎜ ⎜= − − − + − + + +⎟ ⎟⎜ ⎜⎟ ⎟⎝ ⎠ ⎝

⎛ ⎞⎟⎜+ + + − + +⎟⎜ ⎟⎝ ⎠

in 2⎞
⎠

 (7) 

An alternative is Helmert's formula in n that has a faster rate of convergence 

 

( )( ){

}

2 2 4 3

2 4 3

4

9 225 3 451 1 1 sin
4 64 2 16

1 15 105 1 35sin 4 sin 6
2 8 32 3 16
1 315 sin 8
4 128

m a n n n n n n

n n n

n

φ φ

φ φ

φ

⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜= − − + + + − + + ⎟⎟ ⎜⎜ ⎟ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛⎟ ⎟⎜ ⎜+ + + − +⎟ ⎟⎜ ⎜⎟ ⎟⎝ ⎠ ⎝
⎛ ⎞⎟⎜+ + +⎟⎜ ⎟⎝ ⎠

2

⎞
⎠

 (8) 

where 
2

a b fn
a b f
−= =
+ −

.  Substituting 90 2 radiansφ π°= =  into (8) gives Q, the 

quadrant length from the equator to the pole 

 ( )( ){ }2 2 49 2251 1 1
4 64

Q a n n n n π= − − + + +
2

 (9) 

The inverse formula, i.e., the latitude φ  (radians) given a meridian distance m is 

 

3 2 4

3 4

3 27 21 55sin 2 sin 4
2 32 16 32
151 1097sin 6 sin 8
96 512

n n n n

n n

φ σ σ σ

σ σ

⎛ ⎞ ⎛⎟ ⎟⎜ ⎜= + − + + − +⎟ ⎟⎜ ⎜⎟ ⎟⎝ ⎠ ⎝
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜+ + + + +⎟ ⎟⎜ ⎜⎟ ⎟⎝ ⎠ ⎝ ⎠

⎞
⎠

 (10) 
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where 
2

m
Q

πσ =  radians 

The derivation of equations (7) to (10) is given in Lauf (1983, pp. 35-8) and for 

computation purposes in Australia the part of the infinite series for m given by 

equation (7) has been limited to the terms shown (ICSM 2003, p.5-19).  The error 

introduced by this truncation is approximately 0.00003 m (Lauf 1983). 

 

Geometric Parameters of Some Selected Ellipsoids 
 

Date Name a (metres) 1/f 

1830 Airy 6377563.396 299.324964600 

1830 Everest (India) 6377276.345 300.801700000 

1880 Clarke 6378249.145 293.465000000 

1924 International 6378388 (exact) 297.0 (exact) 

1966 Australian National Spheroid (ANS) 6378160 (exact) 298.25 (exact) 

1967 Geodetic Reference System (GRS67) 6378160 (exact) 298.247167427 

1980 Geodetic Reference System (GRS80) 6378137 (exact) 298.257222101 

1984 World Geodetic System (WGS84) 6378137 (exact) 298.257223563 

 

 Table 1. Geometric constants of selected ellipsoids. 
  From Appendix A1, Technical Report, Department of 

  Defense World Geodetic System 1984 (NIMA 2000) 

 

 

Prior to 1967 the geometric constants of various ellipsoids were determined from 

analysis of arc measurements and or astronomic observations in various regions of the 

Earth, the resulting parameters reflecting the size and shape of "best fit" ellipsoids for 

those regions; the International Ellipsoid of 1924 was adopted by the International 

Association of Geodesy (at its general assembly in Madrid in 1924) as a best fit of the 

entire Earth.  In 1967 the International Astronomic Union (IAU) and the 

International Union of Geodesy and Geophysics (IUGG) defined a set of four physical 

parameters for the Geodetic Reference System 1967 based on the theory of a 

geocentric equipotential ellipsoid.  These were: a, the equatorial radius of the Earth, 

GM, the geocentric gravitational constant (the product of the Universal Gravitational 

Constant G and the mass of the Earth M, including the atmosphere), , the 2J
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dynamical form factor of the Earth and , the angular velocity of the Earth's 

rotation.  The geometric constants  and f of an ellipsoid (the normal ellipsoid) can 

be derived from these defining parameters as well as the gravitational potential of the 

ellipsoid and the value of gravity on the ellipsoid (normal gravity). 

ω
2e

 

The Geodetic Reference System 1980 (GRS80), adopted by the XVII General 

Assembly of the IUGG in Canberra, December 1979 is the current best estimate with 

, 6378137 ma = 8 33986005 10 2 m sGM −= × ,  and 

 (BG 1988).  The World Geodetic System 1984 (WGS84), 

the datum for the Global Positioning System (GPS), is based on the GRS80, except 

that the dynamical form factor of the Earth is expressed in a modified form, causing 

very small differences between derived constants of the GRS80 and WGS84 ellipsoids 

(NIMA 2000).  These differences can be regarded as negligible for all practical 

purposes (a difference of 0.0001 m in the semi-minor axes).  The Geocentric Datum of 

Australia (GDA) uses the GRS80 ellipsoid as its reference ellipsoid. 

8
2 108263 10J −= ×

11 -17292115 10  rad sω −= ×

 

 

GEODETIC DATUMS AND COORDINATE SYSTEMS IN AUSTRALIA 

 

A map projection is the mathematical transformation of coordinates on one surface, 

in our case the ellipsoidal reference surface of the Earth, to coordinates on the 

projection plane.  Points P on the Earth's terrestrial surface are related to the 

ellipsoid via normals passing through those points (see Figure 1 where P is referenced 

as Q on the surface of the ellipsoid) and have geodetic coordinates  (latitude, 

longitude, ellipsoidal height).  The third coordinate h, 

, ,hφ λ

plays no part in any map 

projection and we are only interested in φ  and , curvilinear coordinates of the 

reference surface for P (and Q), i.e., in any map projection we are only transforming 

points on the ellipsoid to points on the projection. 

λ

 

Before any sensible mapping (or coordination) of a region can take place a Geodetic 

Datum must be established; which in its simplest form consists of two "actions"; (i) a 

definition of the size and shape of a suitable reference ellipsoid, and (ii) the location 

of the ellipsoid's centre and orientation of its minor axis with respect to the Earth's 

centre of mass and rotational axis. 
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In Australia, mapping and coordination is related to two geodetic datums, the 

Australian Geodetic Datum (AGD) in use since 1966 and the more modern 

Geocentric Datum of Australia (GDA), in use since the late 1990's.  These two 

geodetic datums have different ellipsoids; the AGD uses the Australian National 

Spheroid (ANS) and the GDA uses the ellipsoid of the GRS80 (see Table 1) and the 

centres of these ellipsoids are at different locations.  The centre of the GDA ellipsoid 

can be assumed to be at the Earth's centre of mass (or geocentre, hence the term 

geocentric in the datum name) whilst the centre of the ANS is displaced from the 

geocentre by approximately , δ , 133 mxδ = + 48 my = + 148 mzδ = −
x

 where 

 and similarly for y and z (Appendix B, NIMA 200, with GDA 

replacing WGS84).  The minor axis of the GDA's ellipsoid is considered to be 

coincident with the Earth's rotational axis and the minor axis of the AGD's ellipsoid 

is considered to be parallel with the Earth's rotational axis. 

AGD GDAx x δ= +

 

Having two geodetic datums leads to the interesting (and often confusing) fact that a 

single point can have two sets of geodetic coordinates ( ).  Figure 2, showing zOy 

meridian sections of the AGD and GDA ellipsoids (greatly exaggerated), hopefully 

explains this situation. 

,φ λ
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 Figure 2. Sections of AGD and GDA ellipsoids showing 

  two latitudes for the single point P 
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Some confusion also arises from the fact that there have been two "realizations" of the 

AGD, i.e., there was an initial adjustment of the national geodetic network in 1966 

leading to an AGD coordinate set (latitudes and longitudes) followed by a subsequent 

re-adjustment of the network, that had been improved by additional measurements 

and stations, leading to another AGD coordinate set.  The two sets were designated 

AGD66 and AGD84.  The following extract from a paper titled 'Transforming 

Cartesian coordinates X,Y,Z to geographical coordinates ' published in the 

Australian Surveyor (Gerdan & Deakin 1999) gives an explanation of these two data 

sets and the AGD. 

, ,hφ λ

 

In 1966, under the direction of the National Mapping Council (NMC) all geodetic surveys in 

Australia were recomputed and adjusted on the then new AGD, an astronomically derived 

topocentric datum having a physical origin near the centroid of the geodetic network and 

fixing an ellipsoid of revolution, the Australian National Spheroid (ANS), with respect to the 

Earth’s rotational axis.  The national adjustment yielded an homogeneous set of geographical 

coordinates (latitudes and longitudes) for the geodetic network.  At the same time, the NMC 

defined a system of rectangular grid coordinates (eastings and northings) known as the 

Australian Map Grid (AMG), based on a Universal Transverse Mercator (UTM) projection 

of AGD latitudes and longitudes. 

 

After 1966 there were several readjustments of the national geodetic network, densified and 

strengthened by the inclusion of improved measurements, each readjustment referred to as a 

Geodetic Model of Australia (GMA).  In 1984 the NMC, recognizing the eventual need for 

Australia to convert to a geocentric datum, adopted the latest readjustment at the time, 

GMA82, as an interim step in this process.  This geographical coordinate set was defined as 

AGD84 with AMG84 grid coordinates, and to avoid confusion, earlier coordinate sets derived 

from the 1966 adjustment were defined as AGD66 and AMG66.  Both ADG66 and AGD84 

coordinates have a common datum (defined in 1966) excepting that AGD84 coordinates were 

derived from an adjustment, which more correctly allowed for the separation between the 

geoid and the ANS over Australia (NMC 1986). 

 

In 1988, the NMC was superseded by the Intergovernmental Committee on Surveying and 

Mapping (ICSM), representing the mapping organizations of the States and Territories of the 

Commonwealth of Australia and New Zealand.  The GDA was adopted by the ICSM in 

November 1994 in response to anticipated demand by major users of GPS technology such as 

the Australian Defence Force, the International Civil Aviation Organization, the 

International Hydrographic Organization and the International Association of Geodesy (Steed 

1996).  The new datum is primarily based on the coordinates of eight geologically stable sites 

across Australia with permanent GPS tracking facilities known as the Australian Fiducial 

Network (AFN), supplemented by a network of seventy survey stations (covering Australia 
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at approximately 500km intervals) which together form the Australian National Network 

(ANN).  Geocentric Cartesian coordinates of these stations were derived from an adjustment 

of precise GPS observations obtained from – (i) a two week global observation period in 1992 

conducted by the International GPS Geodynamics Service at approximately two hundred 

sites around the world (including all the AFN sites) and  (ii) ICSM campaigns in 1992, ’93 

and ’94 linking all AFN and ANN sites.  These coordinates are related to the International 

Earth Rotation Service (IERS) Terrestrial Reference Frame for 1992 (ITRF92) at epoch 

1994.0  [The epoch 1994.0 (1st Jan. 1994) reflects the fact that monitoring stations used by 

IERS are moving with respect to each other due to earth crustal motion; the epoch date 

indicating the datum is ITRF92 adjusted for station motion in the intervening period].  The 

ICSM has defined GDA94 coordinates as latitudes and longitudes related to the ellipsoid of 

the Geodetic Reference System 1980 (GRS80) [BG 1988] and Map Grid Australia 1994 

(MGA94) grid coordinates as a UTM projection of those latitudes and longitudes. 

 

 

SOME MAP PROJECTION THEORY 

 

A map projection is the mathematical transformation of coordinates on a datum 

surface to coordinates on a projection surface.  In all the map projections we will be 

dealing with, the datum surface is an ellipsoid representing the Earth and on this 

surface, there are imaginary sets of reference curves, or parametric curves, that we 

use to coordinate points.  We know these parametric curves as parallels of latitude φ  

and meridians of longitude λ  and along these curves one of the parameters,  or λ  

are constant.  Points on the datum surface having particular values of φ  and λ  are 

said to have 

φ

curvilinear coordinates that we commonly call geographical or geodetic 

coordinates.  Points on the datum surface can also have x,y,z Cartesian coordinates 

and there are mathematical connections between the curvilinear and Cartesian that 

we call functional relationships and write as 

 

( )

( )

( ) ( )

1

2

2
3

, cos cos

, cos sin

, 1 si

x f

y f

z f e

φ λ ν φ λ

φ λ ν φ λ

φ λ ν φ

= =

= =

= = − n  (11) 

Figure 3(a) shows a datum surface representing the Earth with meridians and 

parallels (the  parametric curves) and the continental outlines.   ,φ λ
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Figure 3(a) Figure 3(b) 

 

Figure 3(b) shows the projection surface, which we commonly refer to as the map 

projection.  In this case the projection is a modified Sinusoidal projection, and as in 

all cases we will deal with in this paper, the projection surface is a plane.  [In general, 

the projection surface may be another curved 3D surface and we use this general 

concept in the theoretical development that follows].  On the projection there are sets 

of parametric curves, say U,V curves that are the projected meridians and parallels 

and points on the projection surface have U,V curvilinear coordinates.  These 

coordinates are related to another 3D Cartesian coordinate system X,Y,Z and the 

two systems are related by another set of functional relationships 

 

( )

( )

( )

1

2

3

,

,

,

X F U V

Y F U V

Z F U V

=

=

= 0=  (12) 

In the case of a plane projection surface  and we would like to establish the 

connections between the curvilinear coordinates  on the datum surface and X,Y 

Cartesian coordinates of the projection plane, i.e., we wish to find the functional 

relationships 

0Z =

,φ λ

 

( )

( )
1

2

,

,

X g

Y g

φ λ

φ λ

=

=  (13) 
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We call these functional relationships the projection equations and they can be 

derived from an understanding of distortions and scale factors that measure the 

distortions.  Inspection of the map projection, Figure 3(b), reveals distortions that we 

see as misshapen continental outlines (Antarctica), points projected as lines (the 

north and south poles) and straight lines projected as curves (the meridians).  Every 

map projection has distortions of one sort or another and we would like to quantify 

these distortions.  It turns out that distortions can be related to scale factors where 

scale is the ratio of elemental distances on the datum surface and the projection 

surface, and a knowledge of scale factors allow us to "uncover" the projection 

equations by enforcing scale conditions and particular geometric constraints. 

 

The elemental distance ds on the datum surface 

 

dz

dx
x dy

y

·

·

ds

z

 

Figure 4.  The elemental distance ds 

From differential geometry, the 

square of the length of a 

differentially small part of a curve 

on the datum surface is 
2 2 2ds dx dy dz= + + 2               (14) 

 

From the functional relationships of (11) the total differentials are 

 

x xdx d d

y ydy d d

z zdz d d

φ λ
φ λ

φ λ
φ λ

φ
φ λ

∂ ∂= +
∂ ∂
∂ ∂= +
∂ ∂
∂ ∂= +
∂ ∂

λ  (15) 
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Substituting equations (15) into equation (14) gathering terms and simplifying gives 

  (16) 2 2 2ds ed f d d g dφ φ λ= + + 2λ

The coefficients of , d d  and  are called the 2dφ φ λ 2dλ Gaussian Fundamental 

Quantities and are invariably indicated in the map projection literature by e, f and g 

or E, F and G.  In this paper, lower case letters e, f and g relate to the datum surface 

and uppercase letters E, F and G relate to the projection surface 

 

2 2 2

2 2 2

x y ze

x x y y z zf

x y zg

φ φ φ

φ λ φ λ φ λ

λ λ λ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟ ⎟ ⎟⎜ ⎜ ⎜= + +⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∂ ∂ ∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂ ∂ ∂
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟ ⎟ ⎟⎜ ⎜ ⎜= + +⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂

 (17) 

Every surface having curvilinear coordinates also has Gaussian Fundamental 

Quantities, for the ellipsoid with parallels and meridians  these quantities can be 

determined from equations 

,φ λ
(11) and (17) as 

  (18) 2, 0, cose f gρ= = = 2 2ν φ

 

The elemental rectangle on the datum surface (the ellipsoid) 

 

In general, the elemental distance ds on the ellipsoid may be shown as the diagonal of 

a differentially small rectangle 

 

ω
ω = 

θ1
θ1

θ 2

θ 2φ

φ + φd

λ
λ + λd

ds

180 − 

√

√

−

−

e d φ

g d λ
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+

 
 

Figure 5.  The elemental rectangle 
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Figure 5 shows two differentially close points P and Q on the datum surface.  The 

parametric curves  and λ  pass through P and the curves  and  pass 

through Q.  The distance PQ is the elemental distance ds.  The elemental rectangle 

formed by the curves may be regarded as a plane figure whose opposite sides are 

parallel straight lines enclosing a differentially small area da.  The angle between the 

parametric curves  and λ  is equal to  

φ dφ + φ λ

2λ

dλ +

φ 1 2 90ω θ θ= + =

 

The elemental distances along parametric curves on the ellipsoid 

 

The elemental distances along the φ  and λ  curves can be obtained from equation 

(16) considering the fact that along the φ -curve, φ  is a constant value, hence 

 and along the λ -curve, λ  is a constant and , hence the elemental 

distance along the λ -curve (a meridian) is 

0dφ = 0dλ =

  ( ) ( )

2 2

22

2

2

2 0 0

ds ed f d d g d

ed f d g

ed

λ φ φ λ

φ φ

φ

= + +

= + +

=

and ds e d dλ φ ρ φ= =  (19) 

Similarly, the elemental distance along the -curve (a parallel) is φ

 cosds g d dφ λ ν φ λ= =  (20) 

 

The angle  between parametric curves on the datum surface ω

 

The elemental rectangle can be regarded as a plane within its infinitely small area 

and from the cosine rule for plane trigonometry, and bearing in mind that 

( )cos 180 cosx x− = −  

 

( )( ) ( )2 2 2

2 2

2 cos 180

2 cos

ds ed g d e d g d

ed g d eg d d

φ λ φ λ

φ λ φ λ ω

= + − −

= + +

ω

 (21) 

Equating (21) and (16) gives an expression for the angle , the angle between the 

parametric curves 

ω
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 cos f
eg

ω =  (22) 

Thus, we may say: if the parametric curves on the datum surface intersect at right 

angles (i.e., they are an orthogonal system of curves) then  90ω °= and .  cos 0ω =

This implies that 0 .  For the ellipsoid, where the parametric curves are the 

orthogonal network of meridians and parallels , see equations 

f =
0f = (18). 

 

Elemental quantities on the projection surface 

 

Using similar developments as we used for the datum surface, the following 

relationships for the projection surface may be derived. 

 

The elemental distance dS on the projection surface 

  (23) 2 2 2 2 2dS dX dY E d F d d G dφ φ λ= + = + + 2λ

where Cartesian coordinates X,Y are functions of  and the Gaussian 

Fundamental Quantities for the projection surface are E, F and G 

,φ λ

 

 

2 2

2 2

X YE

X X Y YF

X YG

φ φ

φ λ φ λ

λ λ

⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜= +⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂ ∂ ∂= +
∂ ∂ ∂ ∂
⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜= +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∂ ∂

 (24) 

The angle  between the parametric curves on the projection surface (the projected 

meridians and parallels) 

Ω

 cos F
EG

=Ω  (25) 
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Scale Factor 

 

Knowledge of scale factors is fundamental in understanding map projections and 

deriving projection equations.  Using certain scale factors, or scale relationships, we 

may create map projections with certain useful properties.  For example, map 

projections that preserve angles at a point are known as conformal, i.e., an angle 

between two lines on the datum surface is transformed into the same angle between 

the complimentary lines on the projection.  Conformal projections have the unique 

property that the scale factor is the same in every direction at a point on the 

projection.  Therefore, we may derive the equations for a conformal map projection 

by enforcing a particular scale relationship. 

 

The equation for (linear) scale factor m is defined as the ratio of elemental distances 

dS on the projection and ds on the datum surface 

 elemental distance on PROJECTION SURFACEscale factor 
elemental distance on DATUM SURFACE

dSm
ds

= =  

or 
2 22

2
2 2

2

2

E d F d d G ddSm
ds ed f d d g d

φ φ λ
φ φ λ

+ +
= =

+ + 2

λ
λ

 (26) 

Dividing numerator and denominator of (26) by  gives 2dλ

 

2

2
2

2

2

d dE F
d dm
d de f
d d

φ φ
λ λ
φ φ
λ λ

⎛ ⎞⎟⎜ + +⎟⎜ ⎟⎜⎝ ⎠=
⎛ ⎞⎟⎜ + +⎟⎜ ⎟⎜⎝ ⎠

G

g
 (27) 

Inspection of this equation shows that in general the scale factor at a point depends 

directly on the term d dφ λ  since for the datum and projection surfaces e, f, g and E, 

F, G are constant for a particular point.  Referring to Figure 5, d dφ λ  is the ratio 

between elemental changes d  and d , and for any curve on the datum surface this 

ratio will vary according to the azimuth α  of the curve.  If the parametric curves on 

the surface intersect at right angles, as meridians of longitude and parallels of 

latitude do, then we can express this as 

φ λ

 tan
g d

e d

λ
α

φ
=  
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where  is a positive clockwise angle measured from the λ -curve ( ).  This 

equation may be rearranged to give expressions for the ratio 

α 1α θ=
d dφ λ  

 
tan
gd

d e
φ
λ α

=      and     
2

2tan
d g
d e
φ
λ α

⎛ ⎞⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠  

Substituting these expressions into equation (27) and simplifying using trigonometric 

relationships gives 

 

2 2

2

cos 2 sin cos sin

1 2 sin cos

E F f G
e f eg gm f

eg

α α α

α α

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎟ ⎟⎜ ⎜⎟⎜ + +⎟ ⎟⎜ ⎜⎟⎜ ⎟ ⎟⎟ ⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠=
+

α
 

and since  (parametric curves on the surface intersecting at right angles) 0f =

 2 2cos 2 sin cos sinE F Gm
e eg g

α α α
⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜= + + ⎟⎜⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠ ⎝ ⎠

2 α  (28) 

 

Important results from the equation for scale factor 

 

1. Scale factor varies everywhere on the map projection.  This fact can be deduced 

from equation (28) when it is realized that the Gaussian Fundamental Quantities 

are functions of the curvilinear coordinates  of the datum surface.  Therefore, 

as points vary across the datum surface their complimentary points on the 

projection will have a varying scale factor. 

,φ λ

 

2. When E G
e g

=  and  the scale factor is independent of direction, i.e., m is 

the same value in every direction about a point on the projection.  Such 

projections are known as 

0F =

CONFORMAL.  We can verify this by substituting a 

constant E GK
e g

= =  and  into 0F = (28) giving 

 ( )2 2 2 2 2cos sin cos sinm K K K Kα α α α= + = + =  

 Note that when , the parametric curves on the projection (i.e., the 

projected meridians and parallels) intersect at right angles. 

0F =
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Conformal projections have the property that shape is preserved.  By this we 

mean that an object on the datum surface, say a square, is transformed into a 

square on the projection surface although it may be enlarged or reduced by a 

constant amount.  Preservation of shape also means that angles at a point are 

preserved.  By this we mean that an angle between two lines radiating from a 

point on the datum surface will be identical to the angle between the two 

projected lines on the projection surface.  There is one minor drawback: these 

properties only hold true for differentially small areas since the relationships 

have been established from the differential ratio 2 2 2S ds=m d .  Nevertheless, 

these properties make conformal projections the most appropriate for 

topographic mapping; since measurements in the field, corrected to the ellipsoid 

(the datum surface), need little or no further correction and can be added to a 

conformal map.  This fact becomes more obvious when we consider the size of 

the Earth and any practical mapping area we might be working on.  Consider a 

1:100,000 Topographic map sheet used in Australia.  This map series is based on 

a conformal projection (UTM) of latitudes and longitudes of points related to the 

ellipsoid and cover 0° 30' of latitude and longitude.  This equates roughly to 

2,461,581,000 m2 of the Earth's surface.  The surface area of the Australian 

National Spheroid, a reasonable approximation to the Earth, is 

, which means the map sheet is 0.000483% of the Earth's 

surface.  Thus the entire map sheet can be regarded as an extremely small 

(almost differentially small) portion of the Earth's surface. 

14 25.1006927 10  m×

 

3. Consider the case where the datum surface is an ellipsoid with meridians and 

parallels as the parametric curves and two points P and Q an elemental distance 

ds apart.  When Q is on the meridian passing through P then α , the azimuth of 

line PQ on the datum surface is 0° or 180° and  and s  and cos 1α = in 0α =

 The meridian scale factor h Eh
e

=  (29) 

 Similarly, when Q is on the parallel passing through P then 

 The parallel scale factor k Gk
g

=  (30) 

 This leads to the common definition of a conformal projection: 
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When f = F = 0 and h = k the projection is conformal  

 

 

CYLINDRICAL MAP PROJECTIONS 

 

In elementary texts on map projections, the projection surfaces are often described as 

developable surfaces, such as the cylinder (cylindrical projections) and the cone 

(conical projections), or a plane (azimuthal projections).  These surfaces are imagined 

as enveloping or touching the datum surface and by some means, usually geometric, 

the meridians, parallels and features are projected onto these surfaces.  In the case of 

the cylinder, it is cut and laid flat (developed).  If the axis of the cylinder coincides 

with the axis of the Earth, the projection is said to be normal aspect, if the axis lies 

in the plane of the equator the projection is known as transverse and in any other 

orientation it is known as oblique.  [It is usual that the descriptor "normal" is implied 

in the name of a projection, but for different orientations, the words "transverse" or 

"oblique" are added to the name.]  This simplified approach is not adequate for 

developing a general theory of projections (which as we can see is quite 

mathematical) but is useful for describing characteristics of certain projections.  In 

the case of cylindrical projections, some characteristics are a common feature: 

 

(i) Meridians of longitude and parallels of latitude form an orthogonal network 

of straight parallel lines. 

(ii) Meridians are equally spaced straight parallel lines intersecting parallels at 

right angles. 

(iii) Parallels, in general, are unequally spaced straight parallel lines but are 

symmetric about the equator. 
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Figure 6.  Schematic diagram of normal aspect cylindrical projection 

 

 

Mercator's projection (normal aspect cylindrical conformal) 

 

The equations for Mercator's projection (of the ellipsoid) are derived in the following 

manner. 

 

Since the parametric curves on the ellipsoid and the projection are both orthogonal 

nets, i.e.,  and 0f F= = ( )1X f λ=  and ( )2Y f φ=  the Gaussian Fundamental 

Quantities E and G of the projection surface are 

 

2 2

2 2

X Y YE

X Y XG

φ φ

λ λ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟ ⎟⎜ ⎜ ⎜= + =⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜ ⎜∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟ ⎟⎜ ⎜ ⎜= + =⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂

2

2

φ

λ

⎟⎟⎟⎟

⎟⎟⎟

2s φ

 

The Gaussian Fundamental Quantities e and g of the datum surface, given by 

equation (18), are 

  2 2, coe gρ ν= =

The projection is to be conformal and the scale condition to be enforced is 

    or   E Gh k
e g

= =  
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Substituting expressions for E, G, e and g and rearranging gives the scale condition 

in the form of a differential equation 

 
cos

dY dX
d d

ρ
φ ν φ λ

=  (31) 

To simplify this equation, we can enforce a particular scale condition: that the scale 

along the equator be unity.  Since k is the scale factor along a parallel, we may 

denote the scale factor along the equator as  where 0k

 0
0 0

1
cos
dXk

dν φ λ
= =  

Now since  and  and  [see equation 0 0φ °= 0cos 1φ = 0 aν = (4)] this particular scale 

condition gives rise to the differential equation 

  (32) dX adλ=

Substituting equation (32) into (31) and rearranging gives 

 
cos

dY a dρ φ
ν φ

=  (33) 

Integrating equations (32) and (33) gives the projection equations for Mercator's 

projection of the ellipsoid (Lauf 1983). 

 

( )0

1 1 sin 1 sinln ln
2 1 sin 2 1 sin

1 sinln tan ln
4 2 2 1 sin

1 sinln tan
4 2 1 sin

X a

e eY a
e

e ea
e

ea
e

λ λ

φ φ
φ φ

π φ φ
φ

π φ φ
φ

= −

⎧ ⎫⎛ ⎞ ⎛⎪ ⎪+ +⎪ ⎪⎟ ⎟⎜ ⎜= −⎟ ⎟⎨ ⎬⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎪ ⎪− −⎝ ⎠ ⎝⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎛ ⎞ +⎪ ⎪⎟⎟ ⎜⎜ ⎟⎜= + − ⎟⎟⎨ ⎬⎜⎟⎜ ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠⎪ ⎪⎝ ⎠ −⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞⎛ ⎞ −⎜⎟⎜= + ⎜⎟⎜ ⎟⎜ ⎜⎝ ⎠ +⎝ ⎠

⎞
⎠

2e⎧ ⎫⎪ ⎪⎪ ⎟⎟⎨ ⎟⎟⎪⎪ ⎪⎩ ⎭

⎪⎬⎪
 (34) 

where a and e are the semi-major axis and eccentricity of the ellipsoid respectively, ln 

is the natural logarithm and  is the longitude of the central meridian of the 

projection. 
0λ
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Figure 7.  Mercator's projection (cylindrical conformal) 
graticule interval 30°, central meridian 135° 

 

 

TRANSVERSE MERCATOR AND UNIVERSAL TRANSVERSE MERCATOR 

PROJECTION 

 

Mercator's projection has low scale error in a small latitude band close to the equator 

but increasingly larger scale errors in higher latitudes regions.  By rotating the 

imaginary cylinder touching the Earth (see Figure 6) by 90° the central line of the 

projection, which is the equator in the normal aspect form, becomes a central 

meridian (having constant scale factor) in the transverse form and the poles lay on 

this line.  The meridians and parallels are complex curves (intersecting everywhere at 

right angles), excepting the equator and the central meridian that are projected as 

straight lines intersecting at right angles. 
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Figure 8.  Transverse Mercator projection 
graticule interval 15°, central meridian 105° 

 

As in the Mercator projection, the Transverse Mercator (TM) projection has low 

scale error in a small longitude band about the central meridian but increasingly 

larger scale errors as the longitude difference from the central meridian increases.  

Because of this limitation, the TM projection is only used to map small bands of 

longitude (generally less than 3° to 4° either side of a central meridian). 

 

The TM projection in its spherical form was invented by the mathematician and 

cartographer Johann Heinrich Lambert (1728-77) and was the third of seven new 

projections which he described in his work Beiträge1 (Lambert 1772).  The ellipsoidal 

form was developed by C.F. Gauss (1777-1855) in 1822 and L. Kr�ger published 

studies in 1912 and 1919 providing formulae for the ellipsoid; in Europe the 

projection is sometimes called the Gauss Conformal or the Gauss-Krüger.  The name 

Transverse Mercator, now in common usage, was first applied by the French map 

projection compiler Germain (Snyder 1987). 

 

The Universal Transverse Mercator (UTM) projection and associated grid were 

adopted by the U.S. Army in 1947 for designating rectangular coordinates on large-

scale military maps of the entire world.  The UTM is the TM projection of the 

ellipsoid with specific parameters, such as numbered zones with designated central 

meridians, a defined central meridian scale factor, false origin locations in northern 

                                     
1 Beiträge means Contributions 
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and southern hemispheres, etc.  All formulae derived in this paper for the TM 

projection are applicable to the UTM projection (Snyder 1987). 

 

The equations for the TM projection of the ellipsoid are derived from a principle of 

conformal mapping developed by Gauss, i.e., conformal transformations from the 

ellipsoid to the plane can be represented by the complex expression 

 ( )Y iX f q iω+ = +  (35) 

Providing that q and ω  are isometric parameters and the complex function 

( )f q iω+  is analytic.  In equation (35) X,Y are Cartesian coordinates on the 

projection plane, 1i = −  (the imaginary number), q is the isometric latitude on the 

ellipsoid and  is a longitude difference (on the ellipsoid) from a central 

meridian.  The left-hand side of 
0ω λ λ= −

(35) is a complex number (or variable) containing 

two parts, the real part, consisting of the parameter Y and the imaginary part 

consisting of the parameter X.  The right-hand-side of (35) is a complex function, i.e., 

a function of real and imaginary parameters q and  respectively.  The word 

isometric means "of equal measure" and the parameters q and  in the complex 

variable on the right-hand-side of 

ω
ω

(35) are isometric parameters related to the 

parameters φ  and λ .  The complex function ( )f q iω+  is analytic if it is everywhere 

differentiable and we may think of an analytic function as one that describes a 

smooth surface having no holes, edges or discontinuities. 

A necessary and sufficient condition for ( )f q iω+  to be analytic is that the Cauchy-

Riemann equations are satisfied, i.e., (Sokolnikoff & Redheffer 1966) 

 andY X Y
q qω ω

∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂

X=  (36) 

 

 

Isometric parameters of the ellipsoid 

 

Isometric means "of equal measure" and we may think of isometric parameters q and 

 on the ellipsoid in the following way.  Imagine you are standing on the surface of 

the Earth (an ellipsoid) at the equator and you measure out a metre north ds  and 

also a metre east ds .  Both of these equal lengths on the Earth would represent 

almost equal angular changes in latitude d  and longitude d .  Now imagine that 

ω

λ

φ

φ λ
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you are close to the North Pole; a metre in the north direction will represent the 

same angular change d  as it did at the equator, but a metre in the east direction 

would represent a much greater change in longitude, i.e., equal north and east linear 

measures near the pole do not correspond to equal angular measures.  What we 

require is a variable angular measure along a meridian of longitude; we call this 

quantity the isometric latitude and it can be determined in the following manner. 

φ

 

Consider the elemental rectangle in Figure 5 and equations (19) and (20); we can see 

that the elemental distances ds  and ds  are not equal for equal angular differentials 

 and d .  Thus the  curvilinear coordinate system of parametric curves is not 

an isometric system.  We can create an isometric system  by writing an 

expression for the elemental distance ds on the ellipsoid as (see equations 

λ φ

dφ λ ,φ λ
,q λ

(16) and 

(18)) 

 ( )

2 2 2 2 2 2

2

2 2 2

2 2 2 2

cos

cos
cos

cos

ds d d

d
d

dq d

ρ φ ν φ λ

ρ φ
ν φ λ

ν φ

ν φ λ

= +

⎧ ⎫⎪ ⎪⎛ ⎞⎪ ⎪⎟⎪ ⎪⎜ ⎟= +⎜⎨ ⎬⎟⎜ ⎟⎪ ⎪⎜⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
= +  (37) 

q is known as the isometric latitude defined by the differential relationship 

 
cos

dq dρ φ
ν φ

=  (38) 

and the new curvilinear coordinate system (  is an isometric system with 

isometric parameters.  We can see this from equation 

)

λ

,q λ
(37), where the elemental 

distances along the parametric curves q and λ  are  and 

, i.e., the elemental distances are equal for equal angular differentials 

dq and d . 

cosds dqλ ν φ=

cosqds dν φ=

λ
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TM projection equations 
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To establish the projection equations the 

function  of equation (f q iω+ )

q

m

q

(35) must 

be determined.  To do this, two 

conditions are enforced: 

(i) the Y-axis shall represent a 

meridian and 

(ii) the scale factor along that meridian 

(the Y-axis) is constant. 

The first condition demands that when 

, i.e., Y is a function of 

the isometric latitude q only and hence 

.  This means that the Y-axis is the 

central meridian  and is the origin of 

longitude differences . 

( )0,X Y f= =

0ω =

0λ

0ω λ λ= −

Figure 9.  TM projection 

The second condition demands that when , where  is the central 

meridian scale factor and m is the meridian distance on the ellipsoid from the equator 

to the point.  But when  hence, 

00,X Y k= = 0k

( )0,X Y f= =

  (39) ( ) 0f q k m=

is the necessary condition. 

 

Equation (35), the complex "mapping" equation, can be approximated (on the right-

hand-side) by a power series of ever smaller terms using Taylor's theorem.  Consider 

a point P having isometric coordinates  linked to an approximate location  

by very small corrections  such that  and ; equation 

,q ω 0 0,q ω
,qδ δω 0q q qδ= + 0ω ω δω= +

(35) becomes 

 

( )

( ) ({ }
( ) ( ){ }

)

( ) ( )

0 0

0 0

0

Y iX f q i

f q q i

f q i q i

f z z f z

ω

δ ω δω

ω δ δω

δ

+ = +

= + + +

= + + +

= + =
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The complex function  can be approximated by a Taylor's series (a power series) ( )f z

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3

1 2 3
0 0 0 02! 3!

z zf z f z z f z f z f zδ δδ= + + + +  

where ( ) ( ) ( ) ( )1 2
0 0, ,f z f z etc

q

q ω

 are first, second and higher order derivatives of the 

function  evaluated at the approximate location .  Choosing, as an 

approximate location, a point on the central meridian having the same isometric 

latitude as P, then  (since  and ) and δω  (since 

 and ), hence  and .  The 

complex function 

( )f z 0z

0qδ = 0q q qδ= + 0q = ω=

0ω ω δω= + 0 0ω = 0 0 0z q iω= + = z q i iδ δ δω= + =
( ) ( )f z f q iω= +  can then be written as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 32 3

2 32! 3!
d i d i df q i f q i f q f q f q
dq dq dq

ω ωω ω+ = + + + +  

( )d f q
dq

, ( )
2

2

d f q
dq

, etc are first, second and higher order derivatives of the function 

.  Noting that  and , the complex 

mapping equation 

( )f q 2 3 41, , 1, etci i i i= − = − = ( ) 0f q k m=

(35) may be written as 

 

( )
2 2 3 3 4 4

0 2 3 4

5 5 6 6 7 7 8 8

5 6 7 8

2! 3! 4 !

5! 6! 7 ! 8!

dm d m d m d mY iX f q i k m i i
dq dq dq dq

d m d m d m d mi i
dq dq dq dq

ω ω ωω ω

ω ω ω ω

⎧⎪⎪+ = + = + − − +⎨⎪⎪⎩
⎫⎪⎪+ − − + + ⎬⎪⎪⎭
 (40) 

Equating the real and imaginary parts of equation (40) gives the projection equations 

in series form 

 

3 3 5 5 7 7

0 3 5 7

2 2 4 4 6 6 8 8

0 2 4 6 8

3! 5! 7 !

2! 4 ! 6! 8!

dm d m d m d mX k
dq dq dq dq

d m d m d m d mY k m
dq dq dq dq

ω ω ωω

ω ω ω ω

⎧ ⎫⎪ ⎪⎪ ⎪= − + − +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪⎪ ⎪= − + − + −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 (41) 

To verify that the function ( )f q iω+  given by equations (40) and (41) is analytic the 

derivatives are 

 

2 3 4 5 6 7 8

0 2 4 6 8

2 3 4 5 6 7

0 3 5 7

3! 5! 7 !

2! 4 ! 6!

X d m d m d m d mk
q dq dq dq dq

X dm d m d m d mk
dq dq dq dq

ω ω ωω

ω ω ω
ω

⎧ ⎫∂ ⎪⎪ ⎪= − + − +⎨ ⎬⎪ ⎪∂ ⎪ ⎪⎩ ⎭
⎧ ⎫∂ ⎪ ⎪⎪ ⎪= − + − +⎨ ⎬⎪ ⎪∂ ⎪ ⎪⎩ ⎭

⎪

 

 31 



 

2 3 4 5 6 7

0 3 5 7

2 3 4 5 6 7 8

0 2 4 6 8

2! 4 ! 6!

3! 5! 7 !

Y dm d m d m d mk
q dq dq dq dq

Y d m d m d m d mk
dq dq dq dq

ω ω ω

ω ω ωω
ω

⎧ ⎫∂ ⎪ ⎪⎪ ⎪= − + − +⎨ ⎬⎪ ⎪∂ ⎪ ⎪⎩ ⎭
⎧ ⎫∂ ⎪⎪ ⎪= − + − + −⎨ ⎬⎪ ⎪∂ ⎪ ⎪⎩ ⎭

⎪  (42) 

and these derivatives satisfy the Cauchy-Riemann equations 

 andY X Y
q qω ω

∂ ∂ ∂ ∂= = −
∂ ∂ ∂ ∂

X  

Hence, the Cartesian coordinates X and Y given by equations (41) are a conformal 

transformation of the isometric parameters q and  on the ellipsoid.  It only 

remains for the derivatives 

0ω λ λ= −
2

2, , edm d m
dq dq

tc  to be evaluated for the projection 

coordinates to be fully defined. 

 

The successive derivatives are obtained by considering the following: 

 

 (i) From the definition of isometric latitude 2cos cos

d ddq
V

ρ φ φ
ν φ

= =
φ

 giving 

 2 cosd V
dq
φ φ=  

  where 2 21 cosV eν φ
ρ

′= = + 2  and 
2 2 2

2
2 1

a b ee
b e
−′ = =

− 2  is the second 

eccentricity squared 

 

 (ii) From the elemental rectangle (Figure 5) the meridian distance m is a 

function of the latitude φ , i.e., dm  and dρ φ=

 dm
d

ρ
φ

=  

 (iii) From the chain rule for differentiation 

 dm dm d
dq d dq

φ
φ

=  

  and the higher order derivatives are obtained by 
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2 3 2

2 3,   ,   etcd m d dm d m d d m
dq dq dq dq dq dq

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= =⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠2  

When evaluating the derivatives it is convenient to make the substitutions 

 2 2 2 2cos   and  tan   hence  1e t V νη φ φ
ρ

′= = = 2η= +

ν

 

The variables  are all functions of the latitude  and the 

differentiations given in (iii) above will, at some stage, require the following 

differentials for simplification 

2 2,  ,   and V tη φ

 
22

2
2,   ,   1 ,   
tdV t d dt dt t

d V d d d V

ν ηη η νη
φ φ φ φ

= − = − = + =  

By repeated applications of the chain rule and algebra the derivates are found: 

 

1st derivative 

 2

2

cos

cos    since 

dm dm d
dq d dq

V

V

φ
φ

ρ φ
νν φ
ρ

=

=

= =

 

2nd derivative 

 
( )

2

2

2

2
2

2

2 2 2

cos   (chain rule)

sin cos cos

sin cos cos

cos sin cos

d m d dm d d
dq dq dq d dq

d V
d

t V
V

V t

φν φ
φ

νρ φ φ φ
φ

νηρ φ φ φ

ν φ φ νη φ

⎛ ⎞⎟⎜= =⎟⎜ ⎟⎟⎜⎝ ⎠
⎧ ⎫⎪ ⎪⎪ ⎪= − +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪⎪ ⎪= − +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

= − +

 

and the 2nd derivative becomes 

( )
2

2 2
2

2 2

sincos sin    since tan
cos

cos sin    since V 1

d m V t
dq

φν φ φ η φ
φ

ν φ φ η

= − + =

= − = +

=
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3rd derivative 

 

( )

( ) ( ){ }
( )

3 2

3 2

2
2 2 2

2

3 2 2 2 2 2

3 2 2

cos sin   (chain rule)

cos sin cos sin cos

cos 1 1

cos 1

d m d d m d d
dq dq dq d dq

t V
V

t t

t

φν φ φ
φ

νην φ ν φ φ φ φ

ν φ η η η

ν φ η

⎛ ⎞⎟⎜= = −⎟⎜ ⎟⎟⎜⎝ ⎠
⎧ ⎫⎪ ⎪⎪ ⎪= − + −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

= − + + + −

= − + −

 

Higher order derivatives are found in a similar manner but with an almost 

exponential increase in algebra. 

( )
4

3 2 2
4 cos sin 5 9 4d m t

dq
ν φ φ η η= − + + 4  

( )
5

5 2 4 2 4
5 cos 5 18 14 13 4d m t t

dq
ν φ η η η= − + + + + 6  

(

)

6
5 2 4 2 4

6

2 2 2 4 2 6 2 8

cos sin 61 58 270 445 324 88

330 680 600 192

d m t t
dq

t t t t

ν φ φ η η η

η η η η

= − + − − − − −

+ + + +

6 8η

 

(

)

7
7 2 4 6 2 4 6

7

8 10 2 2 2 4 2

2 8 2 10 4 2 4 4

4 6 4 8 4 10

cos 61 479 179 331 715 769

412 88 3298 8655 10964

6760 1632 1771 6080

9480 6912 1920

d m t t t
dq

t t

t t t t

t t t

ν φ η η η

η η η η η

η η η η

η η η

= − + − + − − −

− − + + +

+ + − −

− − −

6t

 

(
8

7 2 4 6 2
8

6 8 10 12

2 2 2 4 2 6 2 8

2 10 2 12 4 2 4 4

4 6 4 8

cos sin 1385 3111 543 10899 34419

56385 50856 24048 4672

32802 129087 252084 263088

140928 30528 9219 49644

121800 151872 94080

d m t t t
dq

t t t

t t t t

t t t

ν φ φ η η

η η η η

η η η

η η η

η η

= − + − + +

+ + + +

− − − −

− − + +

+ + + )4 10 4 1223040tη +

4

t η

η

η  (43) 

The derivatives given in equations (43) can be found embedded in equations (288), 

page 96 of Conformal Projections in Geodesy and Cartography (Thomas 1952) and 
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the method of derivation outlined above is given in Geodesy and Map Projections 

(Lauf 1983). 

 

Substituting these derivatives into equations (41) give expressions for the X and Y 

coordinates of a TM projection but it is useful to note that the coefficients of these 

derivatives may be quite small, e.g., for a TM zone 12° wide in longitude 

 the coefficients of the 7th and 8th derivatives are 6 0.104720 radiansω °= =
7

112.740121E
5040
ω −=  and 

8
133.586810E

40320
ω −=  respectively.  Using these coefficient 

values, all the terms in the 7th and 8th derivatives involving powers of η  ( , , 

etc) and powers of t and  combined 

2η 4η

η ( )2 2 2 4, , etct tη η  were calculated, summed and 

then multiplied by the coefficients, for latitudes in one-degree intervals from the 

equator ( ) to .  The maximum values amount to "errors" of 0.00040 

metres at the equator for an X-coordinate and 0.00003 metres at  for a Y-

coordinate.  Hence all these terms in the 7th and 8th derivatives may be neglected 

without introducing any appreciable error in the coordinates.  For the development of 

subsequent formulae the 7th and 8th derivatives are defined as equal to: 

0φ = 75φ =

14φ =

 

( )

(

7
7 2 4 6

7

8
7 2

8

cos 61 479 179

cos sin 1385 3111 543

d m t t t
dq
d m t t
dq

ν φ

ν φ φ

− + − +

− + − )4 6t  (44) 

A further simplification of the terms involving powers of  in the 3rd, 4th, 5th and 

6th derivatives can be made with the substitution 

η

 2 1Vνψ
ρ

= = = + 2η

1

1

 (45) 

that leads to expressions for the powers of η  

  (46) 
2 6 3 2

4 2 8 4 3 2

1 3 3

2 1 4 6 4

η ψ η ψ ψ ψ

η ψ ψ η ψ ψ ψ ψ

= − = − + −

= − + = − + − +

Substituting these into the derivatives and gathering powers of  gives the usual 

expressions for the X and Y coordinates of a TM projection 

ψ

 35 



 

( )

( ) ( ) ( )

( )

3
3 2

0

5
5 3 2 2 2 2

7
7 2 4 6

cos cos
6

cos 4 1 6 1 8 2
120

cos 61 479 179
5040

X k t

t t t

t t t

ωνω φ ν φ ψ

ων φ ψ ψ ψ

ων φ

⎧⎪⎪= + −⎨⎪⎪⎩

⎡ ⎤+ − + + − +⎢ ⎥⎣ ⎦
⎫⎪⎪+ − + − ⎬⎪⎪⎭

4t

 (47) 

 

( )

( ) (
( ) ( )

)

(

2 4
3 2

0

4 2 3
6

5
2 2 2 4

8
7 2 4

sin cos sin cos 4
2 24

8 11 24 28 1 6
sin cos

720 1 32 2

sin cos 1385 3111 543
40320

Y k m t

t t

t t t

t t t

ω ων φ φ ν φ φ ψ ψ

ψ ψων φ φ
ψ ψ

ων φ φ

⎧⎪⎪= + + + −⎨⎪⎪⎩

)

2

2

6

⎡ ⎤− − −⎢ ⎥+ ⎢ ⎥
⎢ ⎥+ − − +⎣ ⎦

⎫⎪⎪+ − + − ⎬⎪⎪⎭
 (48) 

These formula, commonly known in Australia as Redfearn's formula were published 

by J.C.B. Redfearn of the Hydrographic Department of the British Admiralty in the 

Empire Survey Review (now Survey Review) in 1948, (Redfearn 1948), who claimed 

"no special mathematical qualifications except, perhaps, that of sticking to what 

seemed at times to be a particularly tough spot of work."  Redfearn's formula, 

equations (47) and (48), and equation (7) for meridian distance m were adopted by 

the National Mapping Council as "exact, and not the opening terms of an infinite 

series" for the purposes of computing AMG coordinates in Australia (NMC 1986). 
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The practical limits of use of Redfearn's formulae can be determined by calculating 

the maximum values of the 4th terms in equations (47) and (48) for one-degree 

intervals of latitude from the equator ( ) to  on the edge of a TM zone 

12° wide in longitude, i.e., .  These were found to be at the equator 

for the X-coordinate and at approximately  for the Y-coordinate.  Note that a 

UTM zone, by definition, is 6° wide in longitude, i.e., . 

0φ = 75φ =

0 6ω λ λ °= − =
16φ °=

0 3ω λ λ °= − =
 

 
 
TM Coordinates 
ANS (a = 6378160, f = 1/298.25) 
 
φ = 0° ω = 6° 
X-coordinate (k0 = 1) 
1st term =   667919.353314 
2nd term =     1228.986723 
3rd term =        3.410334 
4th term =        0.010661 
Sum    X =   669151.761032 
 
 
 

 
 
 
φ = 16° ω = 6° 
Y-coordinate (k  = 1) 0

m        =   1769649.337353 
1st term =      9268.572180 
2nd term =        38.929264 
3rd term =         0.152707 
4th term =         0.000542 
Sum    Y =   1778956.992047 
 
 

Inspection of these values would seem to indicate that the "missing terms" in the 

truncated series would, in all likelihood, be at least an order of magnitude less 

than the 4th terms.  We could be fairly confident that Redfearn's formulae are 

accurate to at least 1 mm on the edge of a TM zone 12° wide in longitude. 

 

For a TM zone 6° wide in longitude, i.e.,  the maximum 4th 

term values are 
0 3ω λ λ °= − =

 
 
TM Coordinates 
ANS (a = 6378160, f = 1/298.25) 
 
φ = 0° ω = 3° 
X-coordinate (k0 = 1) 
1st term =   333959.676657 
2nd term =      153.623340 
3rd term =        0.106573 
4th term =        0.000083 
Sum    X =   334113.406654 
 

 
 
φ = 16° ω = 3° 
Y-coordinate (k0 = 1) 
m        =   1769649.337353 
1st term =      2317.143045 
2nd term =         2.433079 
3rd term =         0.002386 
4th term =         0.000002 
Sum    Y =   1771968.915865 
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East and North Coordinates, False Origins and True Origins 
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Figure 10.  True and False origins of a TM projection 

 

Redfearn's formula give X and Y coordinates of P relative to the True Origin, 

which is located at the intersection of the Equator and the Central Meridian.  

For P in the southern hemisphere and west of the Central Meridian, these 

coordinates will both be negative.  To make all coordinates in a zone positive 

quantities, a new rectangular East-North (E,N) coordinate system is introduced 

with its origin, known as the False Origin, offset from the True Origin.  East 

and North coordinates are then given by 

 

 west offset

 north offset

 south offset

E X

N Y

= +

⎧ ⎫−⎪ ⎪⎪= ⎨⎪+⎪ ⎪⎩ ⎭

⎪⎬⎪
 (49) 

Note: UTM zones are divided into Northern and Southern hemisphere portions.  For a northern 

zone, the west offset is 500,000 metres and the north offset is zero, i.e., the False Origin 

lays on the Equator, 500,000 metres west of the True Origin.  For a southern zone the 

west offset is 500,000 metres and the south offset is 10,000,000 metres. 

 

 38 



Grid Convergence γ  on a TM projection 
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Grid convergence γ  (gamma) at a 

point P is the angle between True 

North, the direction of the projected 

meridian through P, and Grid North, 

the direction of a line through P that 

is parallel with the central meridian. 

 

Grid convergence is defined by the 

differential relationship 

 

 tan dX
dY

γ = −  (50) 

Figure 12. Grid Convergence 

 

As X and Y are both functions of the isometric latitude q and the longitude 

difference  we may use the Total Differential theorem of calculus and 

write 
0ω λ λ= −

 

X XdX dq d
q
Y YdY dq d
q

ω
ω

ω
ω

∂ ∂= +
∂ ∂
∂ ∂= +
∂ ∂

 (51) 

We can evaluate equation (50) using the differentials of (51) at a point of our 

choosing or in a direction of our choice.  Choosing a direction along a meridian 

where  is constant, hence  in equations 0ω λ λ= − 0dω = (51), give expressions 

for dX and dY, that when substituted into equation (50) give 

 
1

tan

X dq
dX X Yq

YdY q qdq
q

γ
−

∂
⎡ ⎤∂ ∂∂ ⎢ ⎥= − = − = −∂ ⎢ ⎥∂ ∂⎣ ⎦

∂

 (52) 

The partial derivatives X q∂ ∂  and Y q∂ ∂  are given in equations (42) 
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2 3 4 5 6 7 8

0 2 4 6 8

2 3 4 5 6 7

0 3 5 7

3! 5! 7 !

2! 4 ! 6!

X d m d m d m d mk
q dq dq dq dq

Y dm d m d m d mk
q dq dq dq dq

ω ω ωω

ω ω ω

⎧ ⎫∂ ⎪⎪ ⎪= − − + − +⎨ ⎬⎪ ⎪∂ ⎪ ⎪⎩ ⎭
⎧ ⎫∂ ⎪ ⎪⎪ ⎪= − + − +⎨ ⎬⎪ ⎪∂ ⎪ ⎪⎩ ⎭

⎪

 (53) 

The differentials 
2

2,dm d m
dq dq

 etc have already been evaluated and given in 

equations (43) [1st to 6th derivatives] and (44) [7th and 8th derivatives] hence 

 

( )

( )

( )

3
3 2 2

5
0 5 2

7
7 2

cos sin

cos sin 5 9 4
6

cos sin 61 58
120

cos sin 1385 3111
5040

t
X k
q t

t

ων φ φ

ω ν φ φ η η

ω ν φ φ

ω ν φ φ

⎧ ⎫−⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪− − + +⎪ ⎪⎪ ⎪⎛ ⎞ ⎪ ⎪∂ ⎪ ⎪⎟⎜− = −⎟ ⎨ ⎬⎜ ⎟⎟⎜ ⎪ ⎪∂⎝ ⎠ + − + −⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪− −⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

4

−

 (54) 

 

( )

( )

( )

2
3 2 2

4
0 5 2

6
7 2

cos

cos 1
2

cos 5 18
24

cos 61 479
720

t
Y k
q t

t

ν φ

ω ν φ η

ω ν φ

ω ν φ

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪+ + −⎪ ⎪⎪ ⎪⎪ ⎪∂ ⎪= ⎨⎪∂ + − +⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪− − + −⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

⎪⎬⎪

φ

 (55) 

With common factors of  and  taken outside the braces 

the derivatives can be written as 

cos sinω ν φ φ− cosν

 

2 4 6
2 4

0

2 4 6
2 4 6

0

cos sin 1 cos cos cos
6 120 5040

cos 1 cos cos cos
2 24 720

X k D E F
q

Y k A B C
q

ω ω ωων φ φ φ φ φ

ω ω ων φ φ φ φ

⎛ ⎞ ⎧ ⎫∂ ⎪ ⎪⎪ ⎪⎟⎜− = + − +⎟ ⎨ ⎬⎜ ⎟⎟⎜ ⎪ ⎪∂⎝ ⎠ ⎪ ⎪⎩ ⎭
⎧ ⎫∂ ⎪ ⎪⎪ ⎪= + + −⎨ ⎬⎪ ⎪∂ ⎪ ⎪⎩ ⎭

6

φ

 

A,B,C,D,E,F are the respective coefficients in t and  from equations η (43) and 

(44) noting that C and F contain no powers of  since they were shown to be 

negligible in the derivation of the projection equations.  Substituting these 

expressions into equation 

η

(52) with  gives 2 2cosy ω=

 
12 3 2 3

tan sin 1 1
6 120 5040 2 24 720
y y y y y yD E F A B Cγ ω φ

−⎧ ⎫⎧⎪ ⎪⎪⎪ ⎪⎪= + − + + + −⎨ ⎬⎨⎪ ⎪⎪⎪ ⎪⎪⎩ ⎭⎩

⎫⎪⎪⎬⎪⎪⎭
 (56) 
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The reciprocal of the 2nd term in the product can be expanded into a sum of 

terms by using a special case of the Binomial series 

 ( ) 1 2 3 41 1x x x x x−+ = − + − + −  

Expanding equation (56) and ignoring powers greater than  gives 3y

 
( ) ( )

( )

2
2

3
2 3

1 3 30 5 10
6 120tan sin

7 210 21 35 210 630
5040

y yD A A E B AD

yF C AB AE BD DA A
γ ω φ

⎧ ⎫⎪ ⎪⎪ ⎪+ − + − − −⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪+ + + + − + −⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

 

With the values for A,B,C,D,E,F from equations (43), (44) and simplifying 

gives 

 

( )

( )

2 2
2 2 4

2 4 2 4 6
4 4

8 2 4 2 6 2 8

6 6
2 4 6

cos1 1 3 2
3

2 4 2 15 35 33costan sin
15 11 40 60 24

cos 17 51 51 17
315

t

t t

t t t

t t t

ω φ η η

η η ηω φγ ω φ
η η η η

ω φ

⎧ ⎫⎪ ⎪⎪ ⎪+ + + +⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎛ ⎞+ + + + +⎪ ⎪⎟⎜⎪ ⎪⎟⎜= + ⎟⎨ ⎬⎜ ⎟⎜⎪ ⎪⎟+ − − − ⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪+ + + +⎪ ⎪⎪ ⎪⎩ ⎭

 (57) 

Note that all coefficients involving  have been neglected in the last term of 

equation 

η
(57).  This equation is essentially the same as Thomas 1952, p. 97, eqn 

294). 

 

To find an expression for γ  we may use the series expansion for arc tan x 

 
3 5 7

1tan
3 5 7
x x xx x− = − + − +  

Hence 
3 5 7tan tan tantan

3 5 7
γ γ γγ γ= − + − +  (58) 

where 
2 2 4 4 6 6cos cos costan sin 1

3 15 315
a b cω φ ω φ ωγ ω φ

⎛ ⎞⎟⎜= + + + ⎟⎜ ⎟⎟⎜⎝ ⎠
φ  (59) 

and, from (57) ( )
( )
( )

2 2 4

2 4 2

2 4 6

1 3 2

2 4 2 15

17 51 51 17

a t

b t t

c t t

η η

η

= + + +

= + + + +

= + + + t
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Ignoring terms greater than  in any expansions we may write 7ω

 

3 3 3 2 2 4 4 4
2

5 5 5 2 2

7 7 7

tan sin cos cos cos1 3 3 3
3 3 3 15 9

tan sin cos1 5
5 5 3

tan sin
7 7

a b a

a

γ ω φ ω φ ω φ ω φ

γ ω φ ω φ

γ ω φ

⎛ ⎞⎟⎜− = − + + + ⎟⎜ ⎟⎟⎜⎝ ⎠
⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎟⎜⎝ ⎠

− = −

4

 (60) 

Remembering that 
2

2 2
2

sintan
cos

t φφ
φ

= =  we may write ( )3 2sin sin costφ φ= 2 φ  

and equations (60) and (59) may be substituted into (58) and simplified to give 

 
( ) ( )

( )

2 2 4 4
2 2

6 6
2 2 2 4 6

cos cos1 5
3 15sin

cos 21 35 105 45
315

a t b at t

c bt a t at t

ω φ ω φ

γ ω φ
ω φ

⎧ ⎫⎪ ⎪⎪ ⎪+ − + − +⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪+ − − + −⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
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Substituting the values for a,b,c, simplifying and ignoring all terms containing 

 in the last term in the braces above gives (Thomas 1952, p. 98, eqn 298) η

 

( )

( )

2 2
2 4

2 2 4 6 8
4 4

2 2 2 4 2 6 2 8

6 6
2 4

cos1 1 3 2
3

2 15 35 33 11cossin
15 15 50 60 24

cos 17 26 2
315

t

t t t t

t t

ω φ η η

η η η ηω φγ ω φ
η η η η

ω φ

⎧ ⎫⎪ ⎪⎪ ⎪+ + +⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎛ ⎞− + + + +⎪ ⎪⎟⎜⎪ ⎪⎟⎜= + ⎟⎨ ⎬⎜ ⎟⎜⎪ ⎪⎟− − − − ⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪+ − +⎪ ⎪⎪ ⎪⎩ ⎭

 (61) 

With the substitution  [see equations 2 1η ψ= − (45) and (46)] into equation 

(61) and gathering powers of , we have the usual expression for the grid 

convergence on a TM projection 

ψ

 

( )

( ) (
( )

)

( )

2 2
2

4 2 3
4 4

2 2 2

6 6
2 4

cos1 2
3

11 24 11 36cossin
15 2 1 7

cos 17 26 2
315

t t

t t

t t

ω φ ψ ψ

ψ ψω φγ ω φ
ψ ψ

ω φ

⎧ ⎫⎪ ⎪⎪ ⎪+ −⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪2⎡ ⎤− − −⎪ ⎪⎢ ⎥⎪ ⎪= +⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥+ − +⎪ ⎪⎣ ⎦⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪+ − +⎪ ⎪⎪ ⎪⎩ ⎭

 (62) 
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The derivation of equation (62) shown here follows Thomas (1952).  Lauf (1983) 

derives a smaller number of terms and Redfearn (1948) published equations (61) 

and (62) but without any derivation. 

 

Equation (62) is used in Australia for computing grid convergence on a UTM 

projection (NMC 1986, ICSM 2003) but with a minus sign attached.  This is to 

ensure that grid convergence is a positive quantity west of the central meridian 

(where  is negative) and a negative quantity east of the central 

meridian (where  is positive). 
0ω λ λ= −

0ω λ λ= −
 

 

Point Scale Factor k on a TM projection 

 

From the definition of scale factor given by equation (26) and with  

(since the projection is conformal),  (Gaussian Fundamental 

Quantities for the ellipsoid) and 

0f F= =
2 2, cose gρ ν= = 2 φ

2 2

,dX dYE F
d dφ λ

⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜= =⎟⎜ ⎟⎜⎟ ⎟⎜⎟⎜ ⎝ ⎠⎝ ⎠
 (Gaussian 

Fundamental Quantities for the projection where the parametric curves are 

functions of φ  and λ  only) we have 

 ( ) ( )
2 2 2 22

2
2 2 2 2 2 2 2cos

E d G ddS dX dYk
ds ed g d d d

φ λ
φ λ ρ φ ν φ

+ += = =
+ + 2λ

 (63) 

Using the expression for isometric latitude given by equation (38) we may write 

 
2 2

2
2

cosd ν φφ
ρ

=  

and the expression for scale factor (in terms of isometric parameters) becomes 

 ( ) ( )

( )
2 2

2

2 2 2cos
dX dYk

dq dν φ λ
+=

+ 2
 (64) 

where, as before 

    and   X X Y YdX dq d dY dq d
q q

ω
ω ω

∂ ∂ ∂ ∂= + = +
∂ ∂ ∂ ∂

ω  (65) 
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Since the projection is conformal, the scale factor is the same in any direction 

and equations (65) can be evaluated in a direction of our choice, say in a 

direction along a meridian where  is constant hence , and 0ω λ λ= − 0dω =

( )dX X q dq= ∂ ∂ , ( )dY Y q dq= ∂ ∂ .  Substituting these expressions into (64) 

gives 

 
2 2

2
2 2

1
cos

X Yk
q qν φ

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞∂ ∂⎪ ⎟⎜ ⎜= +⎟⎨⎜ ⎜⎟⎟⎜ ⎜⎪ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎪⎟⎟ ⎬⎟⎟ ⎪
 (66) 

Now the derivatives ,X q Y q−∂ ∂ ∂ ∂  are given in equations (54) and (55) and 

substituting these into (66) gives, after some simplification 

 

( )

( )

2 2 2

2 2 4 6
4 4

2 2
0 2 2 2 4 2 6

6 6
2 4

1 cos 1

2 5 4cos
3 7 12 6

cos 17 26 2
45

t
k k

t n t n t n

t t

ω φ η

η η ηω φ

ω φ

⎧ ⎫⎪ ⎪⎪ ⎪⎪ + + ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎛ ⎞− + + +⎪ ⎪⎟⎜⎪ ⎟⎜= + ⎟⎨ ⎜ ⎟⎜⎪ ⎟− − − ⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪+ − +⎪ ⎪⎪ ⎪⎩ ⎭

⎪⎬⎪
 (67) 

Equation (67) is in the general form ( )2 2
0 1k k x= +  and taking the square root 

of both sides of the equation gives the scale factor ( ) ( )1 2
0 01 1k k x k x= + = + .  

Using a special case of the Binomial series, the square root ( )1 21 x+  is given by 

 ( )1 2 2 31 1 1 31 1
2 2 4 2 4 6

x x x x⋅+ = + − + −
⋅ ⋅ ⋅

 

and after some algebra 

 

( )

( )

2 2
2

2 2 4 6
4 4

0 2 2 2 4 2 6

6 6
2 4

cos1 1
2

5 4 14 13 4cos
24 28 48 24

cos 61 148 16
720

t
k k

t n t n t n

t t

ω φ η

η η ηω φ

ω φ

⎧ ⎫⎪ ⎪⎪ ⎪+ +⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎛ ⎞− + + +⎪ ⎪⎟⎜⎪ ⎪⎟⎜= + ⎟⎨ ⎬⎜ ⎟⎜⎪ ⎪⎟− − − ⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪+ − +⎪ ⎪⎪ ⎪⎩ ⎭

 (68) 

With the substitution  [see equations 2 1η ψ= − (45) and (46)] into equation 

(68) and gathering powers of , we have the usual expression for the point 

scale factor on a TM projection 

ψ
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( )

( ) ( ) ( ){ }

( )

2 2

4 4
3 2 2 2 2

0

6 6
2 4

cos1
2

cos 4 1 6 1 24 4
24
cos 61 148 16
720

k k t t t

t t

ω φ ψ

ω φ ψ ψ ψ

ω φ

⎧ ⎫⎪ ⎪⎪ ⎪+⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪= + − + + −⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪+ − +⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

 (69) 

 

 

SUMMARY 

 

This paper has provided a detailed outline of the derivation of Redfearn's 

equations.  Some of the calculus (and algebra) has been shown but mostly it is 

hidden from view.  In the past, this all would have been done using pencil and 

paper, employing skills developed by practice.  Now, with the aid of 

mathematical computer packages such as MAPLE, the hard work of algebra can 

be reduced to a series of computer commands, revealing more clearly the 

connection between theories and working formulae.  All the results in this paper 

(the TM formulae for coordinates, grid convergence and point scale factor) have 

been developed using MAPLE, but the method of derivation is one that would 

have been applied in the past.  It is hoped that this paper may be of some use 

to those who wish to demonstrate the power of mathematical computer 

packages versus the traditional methods of solution. 

 

In addition, it is hoped that this paper will supplement the excellent technical 

manuals available to practitioners in Australia. 
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